How Logical and Physical plan works when read Hive Partitioned ORC table in pyspark dataframe





.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty{ height:90px;width:728px;box-sizing:border-box;
}







0















I have created a spark dataframe reading csv from hdfs location.





emp_df = spark.read.format("com.databricks.spark.csv") 
.option("mode", "DROPMALFORMED")
.option("header", "true")
.option("inferschema", "true")
.option("delimiter", ",").load(PATH_TO_FILE)


and saving this dataframe as Hive paritioned orc table using partitionBy method



emp_df.repartition(5, 'emp_id').write.format('orc').partitionBy("emp_id").saveAsTable("UDB.temptable")


when I am reading this table as below method and If I look at the logical and physical plan, it seems that it has perfectly filtered the data using partition key column:



emp_df_1 = spark.sql("select * from UDB.temptable where emp_id ='6'")
emp_df_1.explain(True)

***************************************************************************
== Parsed Logical Plan ==
'Project [*]
+- 'Filter ('emp_id = 6)
+- 'UnresolvedRelation `UDB`.`temptable`

== Analyzed Logical Plan ==
emp_name: string, emp_city: string, emp_salary: int, emp_id: int
Project [emp_name#7399, emp_city#7400, emp_salary#7401, emp_id#7402]
+- Filter (emp_id#7402 = cast(6 as int))
+- SubqueryAlias temptable
+- Relation[emp_name#7399,emp_city#7400,emp_salary#7401,emp_id#7402] orc

== Optimized Logical Plan ==
Filter (isnotnull(emp_id#7402) && (emp_id#7402 = 6))
+- Relation[emp_name#7399,emp_city#7400,emp_salary#7401,emp_id#7402] orc

== Physical Plan ==
*(1) FileScan orc udb.temptable[emp_name#7399,emp_city#7400,emp_salary#7401,emp_id#7402] Batched: true, Format: ORC, Location: PrunedInMemoryFileIndex[hdfs://pathlocation/database/udb....,
PartitionCount: 1, PartitionFilters: [isnotnull(emp_id#7402), (emp_id#7402 = 6)], PushedFilters: , ReadSchema: struct<emp_name:string,emp_city:string,emp_salary:int>
***************************************************************************


whereas If I read this dataframe via absolute hdfs path location, it seems that it is not able to filter the data using partition key column:



emp_df_2 = spark.read.format("orc").load("hdfs://pathlocation/database/udb.db/temptable/emp_id=6")
emp_df_2.explain(True)

******************************************************************************
== Parsed Logical Plan ==
Relation[emp_name#7411,emp_city#7412,emp_salary#7413] orc

== Analyzed Logical Plan ==
emp_name: string, emp_city: string, emp_salary: int
Relation[emp_name#7411,emp_city#7412,emp_salary#7413] orc

== Optimized Logical Plan ==
Relation[emp_name#7411,emp_city#7412,emp_salary#7413] orc

== Physical Plan ==
*(1) FileScan orc [emp_name#7411,emp_city#7412,emp_salary#7413] Batched: true, Format: ORC, Location: InMemoryFileIndex[hdfs://pathlocation/data/database/udb.db/tem...,
PartitionFilters: , PushedFilters: , ReadSchema: struct<emp_name:string,emp_city:string,emp_salary:int>
********************************************************************************


Could you please help me to understand the logical and physical plan in both the cases?










share|improve this question































    0















    I have created a spark dataframe reading csv from hdfs location.





    emp_df = spark.read.format("com.databricks.spark.csv") 
    .option("mode", "DROPMALFORMED")
    .option("header", "true")
    .option("inferschema", "true")
    .option("delimiter", ",").load(PATH_TO_FILE)


    and saving this dataframe as Hive paritioned orc table using partitionBy method



    emp_df.repartition(5, 'emp_id').write.format('orc').partitionBy("emp_id").saveAsTable("UDB.temptable")


    when I am reading this table as below method and If I look at the logical and physical plan, it seems that it has perfectly filtered the data using partition key column:



    emp_df_1 = spark.sql("select * from UDB.temptable where emp_id ='6'")
    emp_df_1.explain(True)

    ***************************************************************************
    == Parsed Logical Plan ==
    'Project [*]
    +- 'Filter ('emp_id = 6)
    +- 'UnresolvedRelation `UDB`.`temptable`

    == Analyzed Logical Plan ==
    emp_name: string, emp_city: string, emp_salary: int, emp_id: int
    Project [emp_name#7399, emp_city#7400, emp_salary#7401, emp_id#7402]
    +- Filter (emp_id#7402 = cast(6 as int))
    +- SubqueryAlias temptable
    +- Relation[emp_name#7399,emp_city#7400,emp_salary#7401,emp_id#7402] orc

    == Optimized Logical Plan ==
    Filter (isnotnull(emp_id#7402) && (emp_id#7402 = 6))
    +- Relation[emp_name#7399,emp_city#7400,emp_salary#7401,emp_id#7402] orc

    == Physical Plan ==
    *(1) FileScan orc udb.temptable[emp_name#7399,emp_city#7400,emp_salary#7401,emp_id#7402] Batched: true, Format: ORC, Location: PrunedInMemoryFileIndex[hdfs://pathlocation/database/udb....,
    PartitionCount: 1, PartitionFilters: [isnotnull(emp_id#7402), (emp_id#7402 = 6)], PushedFilters: , ReadSchema: struct<emp_name:string,emp_city:string,emp_salary:int>
    ***************************************************************************


    whereas If I read this dataframe via absolute hdfs path location, it seems that it is not able to filter the data using partition key column:



    emp_df_2 = spark.read.format("orc").load("hdfs://pathlocation/database/udb.db/temptable/emp_id=6")
    emp_df_2.explain(True)

    ******************************************************************************
    == Parsed Logical Plan ==
    Relation[emp_name#7411,emp_city#7412,emp_salary#7413] orc

    == Analyzed Logical Plan ==
    emp_name: string, emp_city: string, emp_salary: int
    Relation[emp_name#7411,emp_city#7412,emp_salary#7413] orc

    == Optimized Logical Plan ==
    Relation[emp_name#7411,emp_city#7412,emp_salary#7413] orc

    == Physical Plan ==
    *(1) FileScan orc [emp_name#7411,emp_city#7412,emp_salary#7413] Batched: true, Format: ORC, Location: InMemoryFileIndex[hdfs://pathlocation/data/database/udb.db/tem...,
    PartitionFilters: , PushedFilters: , ReadSchema: struct<emp_name:string,emp_city:string,emp_salary:int>
    ********************************************************************************


    Could you please help me to understand the logical and physical plan in both the cases?










    share|improve this question



























      0












      0








      0








      I have created a spark dataframe reading csv from hdfs location.





      emp_df = spark.read.format("com.databricks.spark.csv") 
      .option("mode", "DROPMALFORMED")
      .option("header", "true")
      .option("inferschema", "true")
      .option("delimiter", ",").load(PATH_TO_FILE)


      and saving this dataframe as Hive paritioned orc table using partitionBy method



      emp_df.repartition(5, 'emp_id').write.format('orc').partitionBy("emp_id").saveAsTable("UDB.temptable")


      when I am reading this table as below method and If I look at the logical and physical plan, it seems that it has perfectly filtered the data using partition key column:



      emp_df_1 = spark.sql("select * from UDB.temptable where emp_id ='6'")
      emp_df_1.explain(True)

      ***************************************************************************
      == Parsed Logical Plan ==
      'Project [*]
      +- 'Filter ('emp_id = 6)
      +- 'UnresolvedRelation `UDB`.`temptable`

      == Analyzed Logical Plan ==
      emp_name: string, emp_city: string, emp_salary: int, emp_id: int
      Project [emp_name#7399, emp_city#7400, emp_salary#7401, emp_id#7402]
      +- Filter (emp_id#7402 = cast(6 as int))
      +- SubqueryAlias temptable
      +- Relation[emp_name#7399,emp_city#7400,emp_salary#7401,emp_id#7402] orc

      == Optimized Logical Plan ==
      Filter (isnotnull(emp_id#7402) && (emp_id#7402 = 6))
      +- Relation[emp_name#7399,emp_city#7400,emp_salary#7401,emp_id#7402] orc

      == Physical Plan ==
      *(1) FileScan orc udb.temptable[emp_name#7399,emp_city#7400,emp_salary#7401,emp_id#7402] Batched: true, Format: ORC, Location: PrunedInMemoryFileIndex[hdfs://pathlocation/database/udb....,
      PartitionCount: 1, PartitionFilters: [isnotnull(emp_id#7402), (emp_id#7402 = 6)], PushedFilters: , ReadSchema: struct<emp_name:string,emp_city:string,emp_salary:int>
      ***************************************************************************


      whereas If I read this dataframe via absolute hdfs path location, it seems that it is not able to filter the data using partition key column:



      emp_df_2 = spark.read.format("orc").load("hdfs://pathlocation/database/udb.db/temptable/emp_id=6")
      emp_df_2.explain(True)

      ******************************************************************************
      == Parsed Logical Plan ==
      Relation[emp_name#7411,emp_city#7412,emp_salary#7413] orc

      == Analyzed Logical Plan ==
      emp_name: string, emp_city: string, emp_salary: int
      Relation[emp_name#7411,emp_city#7412,emp_salary#7413] orc

      == Optimized Logical Plan ==
      Relation[emp_name#7411,emp_city#7412,emp_salary#7413] orc

      == Physical Plan ==
      *(1) FileScan orc [emp_name#7411,emp_city#7412,emp_salary#7413] Batched: true, Format: ORC, Location: InMemoryFileIndex[hdfs://pathlocation/data/database/udb.db/tem...,
      PartitionFilters: , PushedFilters: , ReadSchema: struct<emp_name:string,emp_city:string,emp_salary:int>
      ********************************************************************************


      Could you please help me to understand the logical and physical plan in both the cases?










      share|improve this question
















      I have created a spark dataframe reading csv from hdfs location.





      emp_df = spark.read.format("com.databricks.spark.csv") 
      .option("mode", "DROPMALFORMED")
      .option("header", "true")
      .option("inferschema", "true")
      .option("delimiter", ",").load(PATH_TO_FILE)


      and saving this dataframe as Hive paritioned orc table using partitionBy method



      emp_df.repartition(5, 'emp_id').write.format('orc').partitionBy("emp_id").saveAsTable("UDB.temptable")


      when I am reading this table as below method and If I look at the logical and physical plan, it seems that it has perfectly filtered the data using partition key column:



      emp_df_1 = spark.sql("select * from UDB.temptable where emp_id ='6'")
      emp_df_1.explain(True)

      ***************************************************************************
      == Parsed Logical Plan ==
      'Project [*]
      +- 'Filter ('emp_id = 6)
      +- 'UnresolvedRelation `UDB`.`temptable`

      == Analyzed Logical Plan ==
      emp_name: string, emp_city: string, emp_salary: int, emp_id: int
      Project [emp_name#7399, emp_city#7400, emp_salary#7401, emp_id#7402]
      +- Filter (emp_id#7402 = cast(6 as int))
      +- SubqueryAlias temptable
      +- Relation[emp_name#7399,emp_city#7400,emp_salary#7401,emp_id#7402] orc

      == Optimized Logical Plan ==
      Filter (isnotnull(emp_id#7402) && (emp_id#7402 = 6))
      +- Relation[emp_name#7399,emp_city#7400,emp_salary#7401,emp_id#7402] orc

      == Physical Plan ==
      *(1) FileScan orc udb.temptable[emp_name#7399,emp_city#7400,emp_salary#7401,emp_id#7402] Batched: true, Format: ORC, Location: PrunedInMemoryFileIndex[hdfs://pathlocation/database/udb....,
      PartitionCount: 1, PartitionFilters: [isnotnull(emp_id#7402), (emp_id#7402 = 6)], PushedFilters: , ReadSchema: struct<emp_name:string,emp_city:string,emp_salary:int>
      ***************************************************************************


      whereas If I read this dataframe via absolute hdfs path location, it seems that it is not able to filter the data using partition key column:



      emp_df_2 = spark.read.format("orc").load("hdfs://pathlocation/database/udb.db/temptable/emp_id=6")
      emp_df_2.explain(True)

      ******************************************************************************
      == Parsed Logical Plan ==
      Relation[emp_name#7411,emp_city#7412,emp_salary#7413] orc

      == Analyzed Logical Plan ==
      emp_name: string, emp_city: string, emp_salary: int
      Relation[emp_name#7411,emp_city#7412,emp_salary#7413] orc

      == Optimized Logical Plan ==
      Relation[emp_name#7411,emp_city#7412,emp_salary#7413] orc

      == Physical Plan ==
      *(1) FileScan orc [emp_name#7411,emp_city#7412,emp_salary#7413] Batched: true, Format: ORC, Location: InMemoryFileIndex[hdfs://pathlocation/data/database/udb.db/tem...,
      PartitionFilters: , PushedFilters: , ReadSchema: struct<emp_name:string,emp_city:string,emp_salary:int>
      ********************************************************************************


      Could you please help me to understand the logical and physical plan in both the cases?







      dataframe hive pyspark orc






      share|improve this question















      share|improve this question













      share|improve this question




      share|improve this question








      edited Nov 29 '18 at 9:26









      mayank agrawal

      1,303621




      1,303621










      asked Nov 29 '18 at 5:30









      vikrant ranavikrant rana

      6521317




      6521317
























          1 Answer
          1






          active

          oldest

          votes


















          0














          In your second example partition location is already covered in HDFS path. You can still put parent directory as a path and make use of partitioning with the following code:





          full_dataset_df = spark.read.format("orc") 
          .load("hdfs://pathlocation/database/udb.db/temptable")
          one_partition_df = full_dataset_df.where(full_dataset_df.emp_id == 6)


          It's worthy to mention that no matter which of these 3 methods you will use, the data processing performance will be the same.






          share|improve this answer


























          • yeah that way we can filter using partition key. I thought by specifying the absoulte path location with partitioning sub directory structure would filter the data by partition. Thanks

            – vikrant rana
            Nov 29 '18 at 15:38











          • Was there any specific reason to downvote?

            – vikrant rana
            Nov 29 '18 at 20:39






          • 1





            I think not, there is nothing wrong with your question. I will upvote it, this is at least what I can do :-)

            – Mariusz
            Nov 30 '18 at 7:14












          Your Answer






          StackExchange.ifUsing("editor", function () {
          StackExchange.using("externalEditor", function () {
          StackExchange.using("snippets", function () {
          StackExchange.snippets.init();
          });
          });
          }, "code-snippets");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "1"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53532432%2fhow-logical-and-physical-plan-works-when-read-hive-partitioned-orc-table-in-pysp%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          0














          In your second example partition location is already covered in HDFS path. You can still put parent directory as a path and make use of partitioning with the following code:





          full_dataset_df = spark.read.format("orc") 
          .load("hdfs://pathlocation/database/udb.db/temptable")
          one_partition_df = full_dataset_df.where(full_dataset_df.emp_id == 6)


          It's worthy to mention that no matter which of these 3 methods you will use, the data processing performance will be the same.






          share|improve this answer


























          • yeah that way we can filter using partition key. I thought by specifying the absoulte path location with partitioning sub directory structure would filter the data by partition. Thanks

            – vikrant rana
            Nov 29 '18 at 15:38











          • Was there any specific reason to downvote?

            – vikrant rana
            Nov 29 '18 at 20:39






          • 1





            I think not, there is nothing wrong with your question. I will upvote it, this is at least what I can do :-)

            – Mariusz
            Nov 30 '18 at 7:14
















          0














          In your second example partition location is already covered in HDFS path. You can still put parent directory as a path and make use of partitioning with the following code:





          full_dataset_df = spark.read.format("orc") 
          .load("hdfs://pathlocation/database/udb.db/temptable")
          one_partition_df = full_dataset_df.where(full_dataset_df.emp_id == 6)


          It's worthy to mention that no matter which of these 3 methods you will use, the data processing performance will be the same.






          share|improve this answer


























          • yeah that way we can filter using partition key. I thought by specifying the absoulte path location with partitioning sub directory structure would filter the data by partition. Thanks

            – vikrant rana
            Nov 29 '18 at 15:38











          • Was there any specific reason to downvote?

            – vikrant rana
            Nov 29 '18 at 20:39






          • 1





            I think not, there is nothing wrong with your question. I will upvote it, this is at least what I can do :-)

            – Mariusz
            Nov 30 '18 at 7:14














          0












          0








          0







          In your second example partition location is already covered in HDFS path. You can still put parent directory as a path and make use of partitioning with the following code:





          full_dataset_df = spark.read.format("orc") 
          .load("hdfs://pathlocation/database/udb.db/temptable")
          one_partition_df = full_dataset_df.where(full_dataset_df.emp_id == 6)


          It's worthy to mention that no matter which of these 3 methods you will use, the data processing performance will be the same.






          share|improve this answer















          In your second example partition location is already covered in HDFS path. You can still put parent directory as a path and make use of partitioning with the following code:





          full_dataset_df = spark.read.format("orc") 
          .load("hdfs://pathlocation/database/udb.db/temptable")
          one_partition_df = full_dataset_df.where(full_dataset_df.emp_id == 6)


          It's worthy to mention that no matter which of these 3 methods you will use, the data processing performance will be the same.







          share|improve this answer














          share|improve this answer



          share|improve this answer








          edited Nov 29 '18 at 14:07









          mayank agrawal

          1,303621




          1,303621










          answered Nov 29 '18 at 11:21









          MariuszMariusz

          6,56421337




          6,56421337













          • yeah that way we can filter using partition key. I thought by specifying the absoulte path location with partitioning sub directory structure would filter the data by partition. Thanks

            – vikrant rana
            Nov 29 '18 at 15:38











          • Was there any specific reason to downvote?

            – vikrant rana
            Nov 29 '18 at 20:39






          • 1





            I think not, there is nothing wrong with your question. I will upvote it, this is at least what I can do :-)

            – Mariusz
            Nov 30 '18 at 7:14



















          • yeah that way we can filter using partition key. I thought by specifying the absoulte path location with partitioning sub directory structure would filter the data by partition. Thanks

            – vikrant rana
            Nov 29 '18 at 15:38











          • Was there any specific reason to downvote?

            – vikrant rana
            Nov 29 '18 at 20:39






          • 1





            I think not, there is nothing wrong with your question. I will upvote it, this is at least what I can do :-)

            – Mariusz
            Nov 30 '18 at 7:14

















          yeah that way we can filter using partition key. I thought by specifying the absoulte path location with partitioning sub directory structure would filter the data by partition. Thanks

          – vikrant rana
          Nov 29 '18 at 15:38





          yeah that way we can filter using partition key. I thought by specifying the absoulte path location with partitioning sub directory structure would filter the data by partition. Thanks

          – vikrant rana
          Nov 29 '18 at 15:38













          Was there any specific reason to downvote?

          – vikrant rana
          Nov 29 '18 at 20:39





          Was there any specific reason to downvote?

          – vikrant rana
          Nov 29 '18 at 20:39




          1




          1





          I think not, there is nothing wrong with your question. I will upvote it, this is at least what I can do :-)

          – Mariusz
          Nov 30 '18 at 7:14





          I think not, there is nothing wrong with your question. I will upvote it, this is at least what I can do :-)

          – Mariusz
          Nov 30 '18 at 7:14




















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Stack Overflow!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53532432%2fhow-logical-and-physical-plan-works-when-read-hive-partitioned-orc-table-in-pysp%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          A CLEAN and SIMPLE way to add appendices to Table of Contents and bookmarks

          Calculate evaluation metrics using cross_val_predict sklearn

          Insert data from modal to MySQL (multiple modal on website)