If human space travel is limited by the G force vulnerability, is there a way to counter G forces?
$begingroup$
I read somewhere that prolonged G forces (even 2 Gs) are not tolerated by human physiology and that this ultimately limits our ability to sustain space travel.
Are there any tactics to reduce G force stress on the body?
gravity
New contributor
$endgroup$
add a comment |
$begingroup$
I read somewhere that prolonged G forces (even 2 Gs) are not tolerated by human physiology and that this ultimately limits our ability to sustain space travel.
Are there any tactics to reduce G force stress on the body?
gravity
New contributor
$endgroup$
6
$begingroup$
The first part of that may be true (that sustained G forces kill you) although this would be a better question if you could give your source. On the other hand current rockets are only able to sustain that kind of acceleration for a few minutes, so it's not really a problem. The scope of possible space travel would massively increase if we could sustain 1G for hours or days (or even years) and only once that is achieved would there be much point in looking at the problems with sustaining 2Gs.
$endgroup$
– Steve Linton
13 hours ago
8
$begingroup$
What Steve said. Human space travel is not limited by G force vulnerability, except during launch and landing. But once you are out of the atmosphere, fuel is so precious that we use the most gentle, efficient accelerations that will work, and even those accelerations are only momentary.
$endgroup$
– Wayne Conrad
13 hours ago
$begingroup$
Prolonged G forces, even 2 G or less could only produced in a centrifuge on Earth. Rockets in space are limited to a few minutes. There is no available technology for a duration of hours or days. But a constant 1 G accleration would not limit our ability to sustain space travel much more than 2 G. Both are pure science fiction today.
$endgroup$
– Uwe
12 hours ago
3
$begingroup$
See related How fast will 1g get you there?
$endgroup$
– James Jenkins
10 hours ago
add a comment |
$begingroup$
I read somewhere that prolonged G forces (even 2 Gs) are not tolerated by human physiology and that this ultimately limits our ability to sustain space travel.
Are there any tactics to reduce G force stress on the body?
gravity
New contributor
$endgroup$
I read somewhere that prolonged G forces (even 2 Gs) are not tolerated by human physiology and that this ultimately limits our ability to sustain space travel.
Are there any tactics to reduce G force stress on the body?
gravity
gravity
New contributor
New contributor
New contributor
asked 13 hours ago
DaaoodDaaood
442
442
New contributor
New contributor
6
$begingroup$
The first part of that may be true (that sustained G forces kill you) although this would be a better question if you could give your source. On the other hand current rockets are only able to sustain that kind of acceleration for a few minutes, so it's not really a problem. The scope of possible space travel would massively increase if we could sustain 1G for hours or days (or even years) and only once that is achieved would there be much point in looking at the problems with sustaining 2Gs.
$endgroup$
– Steve Linton
13 hours ago
8
$begingroup$
What Steve said. Human space travel is not limited by G force vulnerability, except during launch and landing. But once you are out of the atmosphere, fuel is so precious that we use the most gentle, efficient accelerations that will work, and even those accelerations are only momentary.
$endgroup$
– Wayne Conrad
13 hours ago
$begingroup$
Prolonged G forces, even 2 G or less could only produced in a centrifuge on Earth. Rockets in space are limited to a few minutes. There is no available technology for a duration of hours or days. But a constant 1 G accleration would not limit our ability to sustain space travel much more than 2 G. Both are pure science fiction today.
$endgroup$
– Uwe
12 hours ago
3
$begingroup$
See related How fast will 1g get you there?
$endgroup$
– James Jenkins
10 hours ago
add a comment |
6
$begingroup$
The first part of that may be true (that sustained G forces kill you) although this would be a better question if you could give your source. On the other hand current rockets are only able to sustain that kind of acceleration for a few minutes, so it's not really a problem. The scope of possible space travel would massively increase if we could sustain 1G for hours or days (or even years) and only once that is achieved would there be much point in looking at the problems with sustaining 2Gs.
$endgroup$
– Steve Linton
13 hours ago
8
$begingroup$
What Steve said. Human space travel is not limited by G force vulnerability, except during launch and landing. But once you are out of the atmosphere, fuel is so precious that we use the most gentle, efficient accelerations that will work, and even those accelerations are only momentary.
$endgroup$
– Wayne Conrad
13 hours ago
$begingroup$
Prolonged G forces, even 2 G or less could only produced in a centrifuge on Earth. Rockets in space are limited to a few minutes. There is no available technology for a duration of hours or days. But a constant 1 G accleration would not limit our ability to sustain space travel much more than 2 G. Both are pure science fiction today.
$endgroup$
– Uwe
12 hours ago
3
$begingroup$
See related How fast will 1g get you there?
$endgroup$
– James Jenkins
10 hours ago
6
6
$begingroup$
The first part of that may be true (that sustained G forces kill you) although this would be a better question if you could give your source. On the other hand current rockets are only able to sustain that kind of acceleration for a few minutes, so it's not really a problem. The scope of possible space travel would massively increase if we could sustain 1G for hours or days (or even years) and only once that is achieved would there be much point in looking at the problems with sustaining 2Gs.
$endgroup$
– Steve Linton
13 hours ago
$begingroup$
The first part of that may be true (that sustained G forces kill you) although this would be a better question if you could give your source. On the other hand current rockets are only able to sustain that kind of acceleration for a few minutes, so it's not really a problem. The scope of possible space travel would massively increase if we could sustain 1G for hours or days (or even years) and only once that is achieved would there be much point in looking at the problems with sustaining 2Gs.
$endgroup$
– Steve Linton
13 hours ago
8
8
$begingroup$
What Steve said. Human space travel is not limited by G force vulnerability, except during launch and landing. But once you are out of the atmosphere, fuel is so precious that we use the most gentle, efficient accelerations that will work, and even those accelerations are only momentary.
$endgroup$
– Wayne Conrad
13 hours ago
$begingroup$
What Steve said. Human space travel is not limited by G force vulnerability, except during launch and landing. But once you are out of the atmosphere, fuel is so precious that we use the most gentle, efficient accelerations that will work, and even those accelerations are only momentary.
$endgroup$
– Wayne Conrad
13 hours ago
$begingroup$
Prolonged G forces, even 2 G or less could only produced in a centrifuge on Earth. Rockets in space are limited to a few minutes. There is no available technology for a duration of hours or days. But a constant 1 G accleration would not limit our ability to sustain space travel much more than 2 G. Both are pure science fiction today.
$endgroup$
– Uwe
12 hours ago
$begingroup$
Prolonged G forces, even 2 G or less could only produced in a centrifuge on Earth. Rockets in space are limited to a few minutes. There is no available technology for a duration of hours or days. But a constant 1 G accleration would not limit our ability to sustain space travel much more than 2 G. Both are pure science fiction today.
$endgroup$
– Uwe
12 hours ago
3
3
$begingroup$
See related How fast will 1g get you there?
$endgroup$
– James Jenkins
10 hours ago
$begingroup$
See related How fast will 1g get you there?
$endgroup$
– James Jenkins
10 hours ago
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
The problem isn't so much that humans cannot sustain high G forces for any extended length of time: The problem is that rockets cannot. If a rocket could sustain 1 g acceleration for a bit over a day, we could go to Mars in a bit over a day. It instead takes several months to get to Mars because the rockets used to get there only fire for a few minutes. The spacecraft then coasts all the way to Mars. Just a few hundredths of a g of sustained acceleration would cut the trip time to Mars down to a week or so.
The chemical engines currently used to propel spacecraft on interplanetary trajectories coupled with the tyranny of the rocket equation are the key reasons rocket cannot sustain high accelerations for an extended length of time. There are some promising low thrust / high efficiency (high specific impulse) technologies such as ion thrusters that might help humans get beyond the Moon. Ion thrusters are in use now, but none are quite ready for prime time when it comes to human spaceflight. There are some promising high thrust / somewhat high specific impulse nuclear technologies that might be useful; these are mired in politics.
Other than science fiction, there is no known technology that could take humans beyond the solar system.
$endgroup$
3
$begingroup$
I disagree with your last sentence we have the tech to get humans beyond the solar system. Getting there and back in a single human life time would be a totally different question/answer. +1 for the rest of the answer though
$endgroup$
– James Jenkins
10 hours ago
2
$begingroup$
@davek Your max speed is lightspeed, though as we near it the energy required to accelerate further steadily climbs - So your basic premise is sound but isn't relevant until we're working in very large fractions of C - or never an issue at all, with present technology.
$endgroup$
– Saiboogu
8 hours ago
3
$begingroup$
@davek you stop accelerating in a plane because the drag from air resistance is equal and opposite to the thrust from the engines at some speed, since there's no air in space there's basically nothing to stop you accelerating more until you get close the speed of light and relativistic effects become significant
$endgroup$
– llama
7 hours ago
2
$begingroup$
Getting into orbit would be a fair bit more efficient with higher accelerations -- as a rough estimate, each second you spend accelerating toward orbital velocity costs you 10 m/s in gravity drag.
$endgroup$
– Mark
7 hours ago
1
$begingroup$
@llama - Well, nothing but the fact that you would definitely run out of propellant long before you got anywhere close to relativistic speeds...
$endgroup$
– Darrel Hoffman
7 hours ago
|
show 5 more comments
$begingroup$
Ignoring the major point that human tolerance of G forces is not the limiting factor on space travel, plenty of thought has been made on how to counteract G forces, not least by 60's scifi writers.
You can find more information than you ever wanted at Projectrho on this topic.
The general gist: for lowish accelerations like 2 G, you don't need to do anything special to the human body, just make sure you're lying either prone or on your back, and remaining disciplined about your breathing.
For higher Gs, like 5G+, you need to carefully manage the human body, putting it in a gel-like coccoon of similar density, and substituting air for a breathable liquid. Any differences in density can result in the denser parts of the body tending to 'settle' towards the back of the ship, and so must be avoided where possible.
Of course, such measures to counteract G forces can only ever be necessary with the use of nuclear or antimatter propellant. Chemical propellants do not burn for long enough to require such measures.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "508"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Daaood is a new contributor. Be nice, and check out our Code of Conduct.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fspace.stackexchange.com%2fquestions%2f35256%2fif-human-space-travel-is-limited-by-the-g-force-vulnerability-is-there-a-way-to%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
The problem isn't so much that humans cannot sustain high G forces for any extended length of time: The problem is that rockets cannot. If a rocket could sustain 1 g acceleration for a bit over a day, we could go to Mars in a bit over a day. It instead takes several months to get to Mars because the rockets used to get there only fire for a few minutes. The spacecraft then coasts all the way to Mars. Just a few hundredths of a g of sustained acceleration would cut the trip time to Mars down to a week or so.
The chemical engines currently used to propel spacecraft on interplanetary trajectories coupled with the tyranny of the rocket equation are the key reasons rocket cannot sustain high accelerations for an extended length of time. There are some promising low thrust / high efficiency (high specific impulse) technologies such as ion thrusters that might help humans get beyond the Moon. Ion thrusters are in use now, but none are quite ready for prime time when it comes to human spaceflight. There are some promising high thrust / somewhat high specific impulse nuclear technologies that might be useful; these are mired in politics.
Other than science fiction, there is no known technology that could take humans beyond the solar system.
$endgroup$
3
$begingroup$
I disagree with your last sentence we have the tech to get humans beyond the solar system. Getting there and back in a single human life time would be a totally different question/answer. +1 for the rest of the answer though
$endgroup$
– James Jenkins
10 hours ago
2
$begingroup$
@davek Your max speed is lightspeed, though as we near it the energy required to accelerate further steadily climbs - So your basic premise is sound but isn't relevant until we're working in very large fractions of C - or never an issue at all, with present technology.
$endgroup$
– Saiboogu
8 hours ago
3
$begingroup$
@davek you stop accelerating in a plane because the drag from air resistance is equal and opposite to the thrust from the engines at some speed, since there's no air in space there's basically nothing to stop you accelerating more until you get close the speed of light and relativistic effects become significant
$endgroup$
– llama
7 hours ago
2
$begingroup$
Getting into orbit would be a fair bit more efficient with higher accelerations -- as a rough estimate, each second you spend accelerating toward orbital velocity costs you 10 m/s in gravity drag.
$endgroup$
– Mark
7 hours ago
1
$begingroup$
@llama - Well, nothing but the fact that you would definitely run out of propellant long before you got anywhere close to relativistic speeds...
$endgroup$
– Darrel Hoffman
7 hours ago
|
show 5 more comments
$begingroup$
The problem isn't so much that humans cannot sustain high G forces for any extended length of time: The problem is that rockets cannot. If a rocket could sustain 1 g acceleration for a bit over a day, we could go to Mars in a bit over a day. It instead takes several months to get to Mars because the rockets used to get there only fire for a few minutes. The spacecraft then coasts all the way to Mars. Just a few hundredths of a g of sustained acceleration would cut the trip time to Mars down to a week or so.
The chemical engines currently used to propel spacecraft on interplanetary trajectories coupled with the tyranny of the rocket equation are the key reasons rocket cannot sustain high accelerations for an extended length of time. There are some promising low thrust / high efficiency (high specific impulse) technologies such as ion thrusters that might help humans get beyond the Moon. Ion thrusters are in use now, but none are quite ready for prime time when it comes to human spaceflight. There are some promising high thrust / somewhat high specific impulse nuclear technologies that might be useful; these are mired in politics.
Other than science fiction, there is no known technology that could take humans beyond the solar system.
$endgroup$
3
$begingroup$
I disagree with your last sentence we have the tech to get humans beyond the solar system. Getting there and back in a single human life time would be a totally different question/answer. +1 for the rest of the answer though
$endgroup$
– James Jenkins
10 hours ago
2
$begingroup$
@davek Your max speed is lightspeed, though as we near it the energy required to accelerate further steadily climbs - So your basic premise is sound but isn't relevant until we're working in very large fractions of C - or never an issue at all, with present technology.
$endgroup$
– Saiboogu
8 hours ago
3
$begingroup$
@davek you stop accelerating in a plane because the drag from air resistance is equal and opposite to the thrust from the engines at some speed, since there's no air in space there's basically nothing to stop you accelerating more until you get close the speed of light and relativistic effects become significant
$endgroup$
– llama
7 hours ago
2
$begingroup$
Getting into orbit would be a fair bit more efficient with higher accelerations -- as a rough estimate, each second you spend accelerating toward orbital velocity costs you 10 m/s in gravity drag.
$endgroup$
– Mark
7 hours ago
1
$begingroup$
@llama - Well, nothing but the fact that you would definitely run out of propellant long before you got anywhere close to relativistic speeds...
$endgroup$
– Darrel Hoffman
7 hours ago
|
show 5 more comments
$begingroup$
The problem isn't so much that humans cannot sustain high G forces for any extended length of time: The problem is that rockets cannot. If a rocket could sustain 1 g acceleration for a bit over a day, we could go to Mars in a bit over a day. It instead takes several months to get to Mars because the rockets used to get there only fire for a few minutes. The spacecraft then coasts all the way to Mars. Just a few hundredths of a g of sustained acceleration would cut the trip time to Mars down to a week or so.
The chemical engines currently used to propel spacecraft on interplanetary trajectories coupled with the tyranny of the rocket equation are the key reasons rocket cannot sustain high accelerations for an extended length of time. There are some promising low thrust / high efficiency (high specific impulse) technologies such as ion thrusters that might help humans get beyond the Moon. Ion thrusters are in use now, but none are quite ready for prime time when it comes to human spaceflight. There are some promising high thrust / somewhat high specific impulse nuclear technologies that might be useful; these are mired in politics.
Other than science fiction, there is no known technology that could take humans beyond the solar system.
$endgroup$
The problem isn't so much that humans cannot sustain high G forces for any extended length of time: The problem is that rockets cannot. If a rocket could sustain 1 g acceleration for a bit over a day, we could go to Mars in a bit over a day. It instead takes several months to get to Mars because the rockets used to get there only fire for a few minutes. The spacecraft then coasts all the way to Mars. Just a few hundredths of a g of sustained acceleration would cut the trip time to Mars down to a week or so.
The chemical engines currently used to propel spacecraft on interplanetary trajectories coupled with the tyranny of the rocket equation are the key reasons rocket cannot sustain high accelerations for an extended length of time. There are some promising low thrust / high efficiency (high specific impulse) technologies such as ion thrusters that might help humans get beyond the Moon. Ion thrusters are in use now, but none are quite ready for prime time when it comes to human spaceflight. There are some promising high thrust / somewhat high specific impulse nuclear technologies that might be useful; these are mired in politics.
Other than science fiction, there is no known technology that could take humans beyond the solar system.
edited 4 hours ago
answered 12 hours ago
David HammenDavid Hammen
31.7k174139
31.7k174139
3
$begingroup$
I disagree with your last sentence we have the tech to get humans beyond the solar system. Getting there and back in a single human life time would be a totally different question/answer. +1 for the rest of the answer though
$endgroup$
– James Jenkins
10 hours ago
2
$begingroup$
@davek Your max speed is lightspeed, though as we near it the energy required to accelerate further steadily climbs - So your basic premise is sound but isn't relevant until we're working in very large fractions of C - or never an issue at all, with present technology.
$endgroup$
– Saiboogu
8 hours ago
3
$begingroup$
@davek you stop accelerating in a plane because the drag from air resistance is equal and opposite to the thrust from the engines at some speed, since there's no air in space there's basically nothing to stop you accelerating more until you get close the speed of light and relativistic effects become significant
$endgroup$
– llama
7 hours ago
2
$begingroup$
Getting into orbit would be a fair bit more efficient with higher accelerations -- as a rough estimate, each second you spend accelerating toward orbital velocity costs you 10 m/s in gravity drag.
$endgroup$
– Mark
7 hours ago
1
$begingroup$
@llama - Well, nothing but the fact that you would definitely run out of propellant long before you got anywhere close to relativistic speeds...
$endgroup$
– Darrel Hoffman
7 hours ago
|
show 5 more comments
3
$begingroup$
I disagree with your last sentence we have the tech to get humans beyond the solar system. Getting there and back in a single human life time would be a totally different question/answer. +1 for the rest of the answer though
$endgroup$
– James Jenkins
10 hours ago
2
$begingroup$
@davek Your max speed is lightspeed, though as we near it the energy required to accelerate further steadily climbs - So your basic premise is sound but isn't relevant until we're working in very large fractions of C - or never an issue at all, with present technology.
$endgroup$
– Saiboogu
8 hours ago
3
$begingroup$
@davek you stop accelerating in a plane because the drag from air resistance is equal and opposite to the thrust from the engines at some speed, since there's no air in space there's basically nothing to stop you accelerating more until you get close the speed of light and relativistic effects become significant
$endgroup$
– llama
7 hours ago
2
$begingroup$
Getting into orbit would be a fair bit more efficient with higher accelerations -- as a rough estimate, each second you spend accelerating toward orbital velocity costs you 10 m/s in gravity drag.
$endgroup$
– Mark
7 hours ago
1
$begingroup$
@llama - Well, nothing but the fact that you would definitely run out of propellant long before you got anywhere close to relativistic speeds...
$endgroup$
– Darrel Hoffman
7 hours ago
3
3
$begingroup$
I disagree with your last sentence we have the tech to get humans beyond the solar system. Getting there and back in a single human life time would be a totally different question/answer. +1 for the rest of the answer though
$endgroup$
– James Jenkins
10 hours ago
$begingroup$
I disagree with your last sentence we have the tech to get humans beyond the solar system. Getting there and back in a single human life time would be a totally different question/answer. +1 for the rest of the answer though
$endgroup$
– James Jenkins
10 hours ago
2
2
$begingroup$
@davek Your max speed is lightspeed, though as we near it the energy required to accelerate further steadily climbs - So your basic premise is sound but isn't relevant until we're working in very large fractions of C - or never an issue at all, with present technology.
$endgroup$
– Saiboogu
8 hours ago
$begingroup$
@davek Your max speed is lightspeed, though as we near it the energy required to accelerate further steadily climbs - So your basic premise is sound but isn't relevant until we're working in very large fractions of C - or never an issue at all, with present technology.
$endgroup$
– Saiboogu
8 hours ago
3
3
$begingroup$
@davek you stop accelerating in a plane because the drag from air resistance is equal and opposite to the thrust from the engines at some speed, since there's no air in space there's basically nothing to stop you accelerating more until you get close the speed of light and relativistic effects become significant
$endgroup$
– llama
7 hours ago
$begingroup$
@davek you stop accelerating in a plane because the drag from air resistance is equal and opposite to the thrust from the engines at some speed, since there's no air in space there's basically nothing to stop you accelerating more until you get close the speed of light and relativistic effects become significant
$endgroup$
– llama
7 hours ago
2
2
$begingroup$
Getting into orbit would be a fair bit more efficient with higher accelerations -- as a rough estimate, each second you spend accelerating toward orbital velocity costs you 10 m/s in gravity drag.
$endgroup$
– Mark
7 hours ago
$begingroup$
Getting into orbit would be a fair bit more efficient with higher accelerations -- as a rough estimate, each second you spend accelerating toward orbital velocity costs you 10 m/s in gravity drag.
$endgroup$
– Mark
7 hours ago
1
1
$begingroup$
@llama - Well, nothing but the fact that you would definitely run out of propellant long before you got anywhere close to relativistic speeds...
$endgroup$
– Darrel Hoffman
7 hours ago
$begingroup$
@llama - Well, nothing but the fact that you would definitely run out of propellant long before you got anywhere close to relativistic speeds...
$endgroup$
– Darrel Hoffman
7 hours ago
|
show 5 more comments
$begingroup$
Ignoring the major point that human tolerance of G forces is not the limiting factor on space travel, plenty of thought has been made on how to counteract G forces, not least by 60's scifi writers.
You can find more information than you ever wanted at Projectrho on this topic.
The general gist: for lowish accelerations like 2 G, you don't need to do anything special to the human body, just make sure you're lying either prone or on your back, and remaining disciplined about your breathing.
For higher Gs, like 5G+, you need to carefully manage the human body, putting it in a gel-like coccoon of similar density, and substituting air for a breathable liquid. Any differences in density can result in the denser parts of the body tending to 'settle' towards the back of the ship, and so must be avoided where possible.
Of course, such measures to counteract G forces can only ever be necessary with the use of nuclear or antimatter propellant. Chemical propellants do not burn for long enough to require such measures.
$endgroup$
add a comment |
$begingroup$
Ignoring the major point that human tolerance of G forces is not the limiting factor on space travel, plenty of thought has been made on how to counteract G forces, not least by 60's scifi writers.
You can find more information than you ever wanted at Projectrho on this topic.
The general gist: for lowish accelerations like 2 G, you don't need to do anything special to the human body, just make sure you're lying either prone or on your back, and remaining disciplined about your breathing.
For higher Gs, like 5G+, you need to carefully manage the human body, putting it in a gel-like coccoon of similar density, and substituting air for a breathable liquid. Any differences in density can result in the denser parts of the body tending to 'settle' towards the back of the ship, and so must be avoided where possible.
Of course, such measures to counteract G forces can only ever be necessary with the use of nuclear or antimatter propellant. Chemical propellants do not burn for long enough to require such measures.
$endgroup$
add a comment |
$begingroup$
Ignoring the major point that human tolerance of G forces is not the limiting factor on space travel, plenty of thought has been made on how to counteract G forces, not least by 60's scifi writers.
You can find more information than you ever wanted at Projectrho on this topic.
The general gist: for lowish accelerations like 2 G, you don't need to do anything special to the human body, just make sure you're lying either prone or on your back, and remaining disciplined about your breathing.
For higher Gs, like 5G+, you need to carefully manage the human body, putting it in a gel-like coccoon of similar density, and substituting air for a breathable liquid. Any differences in density can result in the denser parts of the body tending to 'settle' towards the back of the ship, and so must be avoided where possible.
Of course, such measures to counteract G forces can only ever be necessary with the use of nuclear or antimatter propellant. Chemical propellants do not burn for long enough to require such measures.
$endgroup$
Ignoring the major point that human tolerance of G forces is not the limiting factor on space travel, plenty of thought has been made on how to counteract G forces, not least by 60's scifi writers.
You can find more information than you ever wanted at Projectrho on this topic.
The general gist: for lowish accelerations like 2 G, you don't need to do anything special to the human body, just make sure you're lying either prone or on your back, and remaining disciplined about your breathing.
For higher Gs, like 5G+, you need to carefully manage the human body, putting it in a gel-like coccoon of similar density, and substituting air for a breathable liquid. Any differences in density can result in the denser parts of the body tending to 'settle' towards the back of the ship, and so must be avoided where possible.
Of course, such measures to counteract G forces can only ever be necessary with the use of nuclear or antimatter propellant. Chemical propellants do not burn for long enough to require such measures.
answered 1 hour ago
IngolifsIngolifs
1,867625
1,867625
add a comment |
add a comment |
Daaood is a new contributor. Be nice, and check out our Code of Conduct.
Daaood is a new contributor. Be nice, and check out our Code of Conduct.
Daaood is a new contributor. Be nice, and check out our Code of Conduct.
Daaood is a new contributor. Be nice, and check out our Code of Conduct.
Thanks for contributing an answer to Space Exploration Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fspace.stackexchange.com%2fquestions%2f35256%2fif-human-space-travel-is-limited-by-the-g-force-vulnerability-is-there-a-way-to%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
6
$begingroup$
The first part of that may be true (that sustained G forces kill you) although this would be a better question if you could give your source. On the other hand current rockets are only able to sustain that kind of acceleration for a few minutes, so it's not really a problem. The scope of possible space travel would massively increase if we could sustain 1G for hours or days (or even years) and only once that is achieved would there be much point in looking at the problems with sustaining 2Gs.
$endgroup$
– Steve Linton
13 hours ago
8
$begingroup$
What Steve said. Human space travel is not limited by G force vulnerability, except during launch and landing. But once you are out of the atmosphere, fuel is so precious that we use the most gentle, efficient accelerations that will work, and even those accelerations are only momentary.
$endgroup$
– Wayne Conrad
13 hours ago
$begingroup$
Prolonged G forces, even 2 G or less could only produced in a centrifuge on Earth. Rockets in space are limited to a few minutes. There is no available technology for a duration of hours or days. But a constant 1 G accleration would not limit our ability to sustain space travel much more than 2 G. Both are pure science fiction today.
$endgroup$
– Uwe
12 hours ago
3
$begingroup$
See related How fast will 1g get you there?
$endgroup$
– James Jenkins
10 hours ago