How to calculate the difference in time between 2 row in spark Scala












-1















I am new to Spark-Scala technologies, as part of my learning, I am trying to find the time between two rows of same colum which consist of date and time together as seen below,



column1                     
1/1/2017 12:01:00 AM
1/1/2017 12:05:00 AM


So I want to get the time variation between two rows from row 1 and row 2 of column1 as both belongs to the same date.
Please let me know what would be the best method to achieve it?
Appreciate if anyone can help on this
Thanks










share|improve this question




















  • 1





    Possible duplicate of Spark Scala: DateDiff of two columns by hour or minute

    – vindev
    Nov 28 '18 at 13:40











  • Can you add the datatype of column that shows time?

    – Gofrette
    Nov 28 '18 at 14:40
















-1















I am new to Spark-Scala technologies, as part of my learning, I am trying to find the time between two rows of same colum which consist of date and time together as seen below,



column1                     
1/1/2017 12:01:00 AM
1/1/2017 12:05:00 AM


So I want to get the time variation between two rows from row 1 and row 2 of column1 as both belongs to the same date.
Please let me know what would be the best method to achieve it?
Appreciate if anyone can help on this
Thanks










share|improve this question




















  • 1





    Possible duplicate of Spark Scala: DateDiff of two columns by hour or minute

    – vindev
    Nov 28 '18 at 13:40











  • Can you add the datatype of column that shows time?

    – Gofrette
    Nov 28 '18 at 14:40














-1












-1








-1








I am new to Spark-Scala technologies, as part of my learning, I am trying to find the time between two rows of same colum which consist of date and time together as seen below,



column1                     
1/1/2017 12:01:00 AM
1/1/2017 12:05:00 AM


So I want to get the time variation between two rows from row 1 and row 2 of column1 as both belongs to the same date.
Please let me know what would be the best method to achieve it?
Appreciate if anyone can help on this
Thanks










share|improve this question
















I am new to Spark-Scala technologies, as part of my learning, I am trying to find the time between two rows of same colum which consist of date and time together as seen below,



column1                     
1/1/2017 12:01:00 AM
1/1/2017 12:05:00 AM


So I want to get the time variation between two rows from row 1 and row 2 of column1 as both belongs to the same date.
Please let me know what would be the best method to achieve it?
Appreciate if anyone can help on this
Thanks







scala apache-spark






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited Nov 28 '18 at 14:21







umesh

















asked Nov 28 '18 at 13:27









umeshumesh

24




24








  • 1





    Possible duplicate of Spark Scala: DateDiff of two columns by hour or minute

    – vindev
    Nov 28 '18 at 13:40











  • Can you add the datatype of column that shows time?

    – Gofrette
    Nov 28 '18 at 14:40














  • 1





    Possible duplicate of Spark Scala: DateDiff of two columns by hour or minute

    – vindev
    Nov 28 '18 at 13:40











  • Can you add the datatype of column that shows time?

    – Gofrette
    Nov 28 '18 at 14:40








1




1





Possible duplicate of Spark Scala: DateDiff of two columns by hour or minute

– vindev
Nov 28 '18 at 13:40





Possible duplicate of Spark Scala: DateDiff of two columns by hour or minute

– vindev
Nov 28 '18 at 13:40













Can you add the datatype of column that shows time?

– Gofrette
Nov 28 '18 at 14:40





Can you add the datatype of column that shows time?

– Gofrette
Nov 28 '18 at 14:40












1 Answer
1






active

oldest

votes


















0














You need to cast the column to timestamp and then do the diff calculation.
Check this out:



scala> val df = Seq(("1/01/2017 12:01:00 AM","1/1/2017 12:05:00 AM")).toDF("time1","time2")
df: org.apache.spark.sql.DataFrame = [time1: string, time2: string]

scala> val df2 = df.withColumn("time1",to_timestamp('time1,"d/MM/yyyy hh:mm:ss a")).withColumn("time2",to_timestamp('time2,"d/MM/yyyy hh:mm:ss a"))
df2: org.apache.spark.sql.DataFrame = [time1: timestamp, time2: timestamp]

scala> df2.printSchema
root
|-- time1: timestamp (nullable = true)
|-- time2: timestamp (nullable = true)

scala> df2.withColumn("diff_sec",unix_timestamp('time2)-unix_timestamp('time1)).withColumn("diff_min",'diff_sec/60).show(false)
+-------------------+-------------------+--------+--------+
|time1 |time2 |diff_sec|diff_min|
+-------------------+-------------------+--------+--------+
|2017-01-01 00:01:00|2017-01-01 00:05:00|240 |4.0 |
+-------------------+-------------------+--------+--------+

scala>


Update1:



scala> val df = Seq(("1/01/2017 12:01:00 AM"),("1/1/2017 12:05:00 AM")).toDF("timex")
df: org.apache.spark.sql.DataFrame = [timex: string]

scala> val df2 = df.withColumn("timex",to_timestamp('timex,"d/MM/yyyy hh:mm:ss a"))
df2: org.apache.spark.sql.DataFrame = [timex: timestamp]

scala> df2.show
+-------------------+
| timex|
+-------------------+
|2017-01-01 00:01:00|
|2017-01-01 00:05:00|
+-------------------+

scala> val df3 = df2.alias("t1").join(df2.alias("t2"), $"t1.timex" =!= $"t2.timex", "leftOuter").toDF("time1","time2")
df3: org.apache.spark.sql.DataFrame = [time1: timestamp, time2: timestamp]

scala> df3.withColumn("diff_sec",unix_timestamp('time2)-unix_timestamp('time1)).withColumn("diff_min",'diff_sec/60).show(false)
+-------------------+-------------------+--------+--------+
|time1 |time2 |diff_sec|diff_min|
+-------------------+-------------------+--------+--------+
|2017-01-01 00:01:00|2017-01-01 00:05:00|240 |4.0 |
|2017-01-01 00:05:00|2017-01-01 00:01:00|-240 |-4.0 |
+-------------------+-------------------+--------+--------+

scala> df3.withColumn("diff_sec",unix_timestamp('time2)-unix_timestamp('time1)).withColumn("diff_min",'diff_sec/60).show(1,false)
+-------------------+-------------------+--------+--------+
|time1 |time2 |diff_sec|diff_min|
+-------------------+-------------------+--------+--------+
|2017-01-01 00:01:00|2017-01-01 00:05:00|240 |4.0 |
+-------------------+-------------------+--------+--------+
only showing top 1 row

scala>





share|improve this answer


























  • the OP has changed the question..let me update the answer

    – stack0114106
    Nov 28 '18 at 15:02











Your Answer






StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53520559%2fhow-to-calculate-the-difference-in-time-between-2-row-in-spark-scala%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









0














You need to cast the column to timestamp and then do the diff calculation.
Check this out:



scala> val df = Seq(("1/01/2017 12:01:00 AM","1/1/2017 12:05:00 AM")).toDF("time1","time2")
df: org.apache.spark.sql.DataFrame = [time1: string, time2: string]

scala> val df2 = df.withColumn("time1",to_timestamp('time1,"d/MM/yyyy hh:mm:ss a")).withColumn("time2",to_timestamp('time2,"d/MM/yyyy hh:mm:ss a"))
df2: org.apache.spark.sql.DataFrame = [time1: timestamp, time2: timestamp]

scala> df2.printSchema
root
|-- time1: timestamp (nullable = true)
|-- time2: timestamp (nullable = true)

scala> df2.withColumn("diff_sec",unix_timestamp('time2)-unix_timestamp('time1)).withColumn("diff_min",'diff_sec/60).show(false)
+-------------------+-------------------+--------+--------+
|time1 |time2 |diff_sec|diff_min|
+-------------------+-------------------+--------+--------+
|2017-01-01 00:01:00|2017-01-01 00:05:00|240 |4.0 |
+-------------------+-------------------+--------+--------+

scala>


Update1:



scala> val df = Seq(("1/01/2017 12:01:00 AM"),("1/1/2017 12:05:00 AM")).toDF("timex")
df: org.apache.spark.sql.DataFrame = [timex: string]

scala> val df2 = df.withColumn("timex",to_timestamp('timex,"d/MM/yyyy hh:mm:ss a"))
df2: org.apache.spark.sql.DataFrame = [timex: timestamp]

scala> df2.show
+-------------------+
| timex|
+-------------------+
|2017-01-01 00:01:00|
|2017-01-01 00:05:00|
+-------------------+

scala> val df3 = df2.alias("t1").join(df2.alias("t2"), $"t1.timex" =!= $"t2.timex", "leftOuter").toDF("time1","time2")
df3: org.apache.spark.sql.DataFrame = [time1: timestamp, time2: timestamp]

scala> df3.withColumn("diff_sec",unix_timestamp('time2)-unix_timestamp('time1)).withColumn("diff_min",'diff_sec/60).show(false)
+-------------------+-------------------+--------+--------+
|time1 |time2 |diff_sec|diff_min|
+-------------------+-------------------+--------+--------+
|2017-01-01 00:01:00|2017-01-01 00:05:00|240 |4.0 |
|2017-01-01 00:05:00|2017-01-01 00:01:00|-240 |-4.0 |
+-------------------+-------------------+--------+--------+

scala> df3.withColumn("diff_sec",unix_timestamp('time2)-unix_timestamp('time1)).withColumn("diff_min",'diff_sec/60).show(1,false)
+-------------------+-------------------+--------+--------+
|time1 |time2 |diff_sec|diff_min|
+-------------------+-------------------+--------+--------+
|2017-01-01 00:01:00|2017-01-01 00:05:00|240 |4.0 |
+-------------------+-------------------+--------+--------+
only showing top 1 row

scala>





share|improve this answer


























  • the OP has changed the question..let me update the answer

    – stack0114106
    Nov 28 '18 at 15:02
















0














You need to cast the column to timestamp and then do the diff calculation.
Check this out:



scala> val df = Seq(("1/01/2017 12:01:00 AM","1/1/2017 12:05:00 AM")).toDF("time1","time2")
df: org.apache.spark.sql.DataFrame = [time1: string, time2: string]

scala> val df2 = df.withColumn("time1",to_timestamp('time1,"d/MM/yyyy hh:mm:ss a")).withColumn("time2",to_timestamp('time2,"d/MM/yyyy hh:mm:ss a"))
df2: org.apache.spark.sql.DataFrame = [time1: timestamp, time2: timestamp]

scala> df2.printSchema
root
|-- time1: timestamp (nullable = true)
|-- time2: timestamp (nullable = true)

scala> df2.withColumn("diff_sec",unix_timestamp('time2)-unix_timestamp('time1)).withColumn("diff_min",'diff_sec/60).show(false)
+-------------------+-------------------+--------+--------+
|time1 |time2 |diff_sec|diff_min|
+-------------------+-------------------+--------+--------+
|2017-01-01 00:01:00|2017-01-01 00:05:00|240 |4.0 |
+-------------------+-------------------+--------+--------+

scala>


Update1:



scala> val df = Seq(("1/01/2017 12:01:00 AM"),("1/1/2017 12:05:00 AM")).toDF("timex")
df: org.apache.spark.sql.DataFrame = [timex: string]

scala> val df2 = df.withColumn("timex",to_timestamp('timex,"d/MM/yyyy hh:mm:ss a"))
df2: org.apache.spark.sql.DataFrame = [timex: timestamp]

scala> df2.show
+-------------------+
| timex|
+-------------------+
|2017-01-01 00:01:00|
|2017-01-01 00:05:00|
+-------------------+

scala> val df3 = df2.alias("t1").join(df2.alias("t2"), $"t1.timex" =!= $"t2.timex", "leftOuter").toDF("time1","time2")
df3: org.apache.spark.sql.DataFrame = [time1: timestamp, time2: timestamp]

scala> df3.withColumn("diff_sec",unix_timestamp('time2)-unix_timestamp('time1)).withColumn("diff_min",'diff_sec/60).show(false)
+-------------------+-------------------+--------+--------+
|time1 |time2 |diff_sec|diff_min|
+-------------------+-------------------+--------+--------+
|2017-01-01 00:01:00|2017-01-01 00:05:00|240 |4.0 |
|2017-01-01 00:05:00|2017-01-01 00:01:00|-240 |-4.0 |
+-------------------+-------------------+--------+--------+

scala> df3.withColumn("diff_sec",unix_timestamp('time2)-unix_timestamp('time1)).withColumn("diff_min",'diff_sec/60).show(1,false)
+-------------------+-------------------+--------+--------+
|time1 |time2 |diff_sec|diff_min|
+-------------------+-------------------+--------+--------+
|2017-01-01 00:01:00|2017-01-01 00:05:00|240 |4.0 |
+-------------------+-------------------+--------+--------+
only showing top 1 row

scala>





share|improve this answer


























  • the OP has changed the question..let me update the answer

    – stack0114106
    Nov 28 '18 at 15:02














0












0








0







You need to cast the column to timestamp and then do the diff calculation.
Check this out:



scala> val df = Seq(("1/01/2017 12:01:00 AM","1/1/2017 12:05:00 AM")).toDF("time1","time2")
df: org.apache.spark.sql.DataFrame = [time1: string, time2: string]

scala> val df2 = df.withColumn("time1",to_timestamp('time1,"d/MM/yyyy hh:mm:ss a")).withColumn("time2",to_timestamp('time2,"d/MM/yyyy hh:mm:ss a"))
df2: org.apache.spark.sql.DataFrame = [time1: timestamp, time2: timestamp]

scala> df2.printSchema
root
|-- time1: timestamp (nullable = true)
|-- time2: timestamp (nullable = true)

scala> df2.withColumn("diff_sec",unix_timestamp('time2)-unix_timestamp('time1)).withColumn("diff_min",'diff_sec/60).show(false)
+-------------------+-------------------+--------+--------+
|time1 |time2 |diff_sec|diff_min|
+-------------------+-------------------+--------+--------+
|2017-01-01 00:01:00|2017-01-01 00:05:00|240 |4.0 |
+-------------------+-------------------+--------+--------+

scala>


Update1:



scala> val df = Seq(("1/01/2017 12:01:00 AM"),("1/1/2017 12:05:00 AM")).toDF("timex")
df: org.apache.spark.sql.DataFrame = [timex: string]

scala> val df2 = df.withColumn("timex",to_timestamp('timex,"d/MM/yyyy hh:mm:ss a"))
df2: org.apache.spark.sql.DataFrame = [timex: timestamp]

scala> df2.show
+-------------------+
| timex|
+-------------------+
|2017-01-01 00:01:00|
|2017-01-01 00:05:00|
+-------------------+

scala> val df3 = df2.alias("t1").join(df2.alias("t2"), $"t1.timex" =!= $"t2.timex", "leftOuter").toDF("time1","time2")
df3: org.apache.spark.sql.DataFrame = [time1: timestamp, time2: timestamp]

scala> df3.withColumn("diff_sec",unix_timestamp('time2)-unix_timestamp('time1)).withColumn("diff_min",'diff_sec/60).show(false)
+-------------------+-------------------+--------+--------+
|time1 |time2 |diff_sec|diff_min|
+-------------------+-------------------+--------+--------+
|2017-01-01 00:01:00|2017-01-01 00:05:00|240 |4.0 |
|2017-01-01 00:05:00|2017-01-01 00:01:00|-240 |-4.0 |
+-------------------+-------------------+--------+--------+

scala> df3.withColumn("diff_sec",unix_timestamp('time2)-unix_timestamp('time1)).withColumn("diff_min",'diff_sec/60).show(1,false)
+-------------------+-------------------+--------+--------+
|time1 |time2 |diff_sec|diff_min|
+-------------------+-------------------+--------+--------+
|2017-01-01 00:01:00|2017-01-01 00:05:00|240 |4.0 |
+-------------------+-------------------+--------+--------+
only showing top 1 row

scala>





share|improve this answer















You need to cast the column to timestamp and then do the diff calculation.
Check this out:



scala> val df = Seq(("1/01/2017 12:01:00 AM","1/1/2017 12:05:00 AM")).toDF("time1","time2")
df: org.apache.spark.sql.DataFrame = [time1: string, time2: string]

scala> val df2 = df.withColumn("time1",to_timestamp('time1,"d/MM/yyyy hh:mm:ss a")).withColumn("time2",to_timestamp('time2,"d/MM/yyyy hh:mm:ss a"))
df2: org.apache.spark.sql.DataFrame = [time1: timestamp, time2: timestamp]

scala> df2.printSchema
root
|-- time1: timestamp (nullable = true)
|-- time2: timestamp (nullable = true)

scala> df2.withColumn("diff_sec",unix_timestamp('time2)-unix_timestamp('time1)).withColumn("diff_min",'diff_sec/60).show(false)
+-------------------+-------------------+--------+--------+
|time1 |time2 |diff_sec|diff_min|
+-------------------+-------------------+--------+--------+
|2017-01-01 00:01:00|2017-01-01 00:05:00|240 |4.0 |
+-------------------+-------------------+--------+--------+

scala>


Update1:



scala> val df = Seq(("1/01/2017 12:01:00 AM"),("1/1/2017 12:05:00 AM")).toDF("timex")
df: org.apache.spark.sql.DataFrame = [timex: string]

scala> val df2 = df.withColumn("timex",to_timestamp('timex,"d/MM/yyyy hh:mm:ss a"))
df2: org.apache.spark.sql.DataFrame = [timex: timestamp]

scala> df2.show
+-------------------+
| timex|
+-------------------+
|2017-01-01 00:01:00|
|2017-01-01 00:05:00|
+-------------------+

scala> val df3 = df2.alias("t1").join(df2.alias("t2"), $"t1.timex" =!= $"t2.timex", "leftOuter").toDF("time1","time2")
df3: org.apache.spark.sql.DataFrame = [time1: timestamp, time2: timestamp]

scala> df3.withColumn("diff_sec",unix_timestamp('time2)-unix_timestamp('time1)).withColumn("diff_min",'diff_sec/60).show(false)
+-------------------+-------------------+--------+--------+
|time1 |time2 |diff_sec|diff_min|
+-------------------+-------------------+--------+--------+
|2017-01-01 00:01:00|2017-01-01 00:05:00|240 |4.0 |
|2017-01-01 00:05:00|2017-01-01 00:01:00|-240 |-4.0 |
+-------------------+-------------------+--------+--------+

scala> df3.withColumn("diff_sec",unix_timestamp('time2)-unix_timestamp('time1)).withColumn("diff_min",'diff_sec/60).show(1,false)
+-------------------+-------------------+--------+--------+
|time1 |time2 |diff_sec|diff_min|
+-------------------+-------------------+--------+--------+
|2017-01-01 00:01:00|2017-01-01 00:05:00|240 |4.0 |
+-------------------+-------------------+--------+--------+
only showing top 1 row

scala>






share|improve this answer














share|improve this answer



share|improve this answer








edited Nov 28 '18 at 15:04

























answered Nov 28 '18 at 14:44









stack0114106stack0114106

4,8222423




4,8222423













  • the OP has changed the question..let me update the answer

    – stack0114106
    Nov 28 '18 at 15:02



















  • the OP has changed the question..let me update the answer

    – stack0114106
    Nov 28 '18 at 15:02

















the OP has changed the question..let me update the answer

– stack0114106
Nov 28 '18 at 15:02





the OP has changed the question..let me update the answer

– stack0114106
Nov 28 '18 at 15:02




















draft saved

draft discarded




















































Thanks for contributing an answer to Stack Overflow!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53520559%2fhow-to-calculate-the-difference-in-time-between-2-row-in-spark-scala%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

A CLEAN and SIMPLE way to add appendices to Table of Contents and bookmarks

Calculate evaluation metrics using cross_val_predict sklearn

Insert data from modal to MySQL (multiple modal on website)