How to freeze TensorFlow ckpt with queuerunner?
I used tf.train.shuffle_batch
while training, and do not use any placeholder, when I freezed the ckpt to pb file, I did not get any input tensor, though I can feed thing to shuffle_batch
tensor, but it need the feed has the same size with the shuffle_batch
data. How to fix it? I know I can rewrite a net and restore params, then freeze, but it is not wise?
The train
import tensorflow as tf
import tensorlayer as tl
from tensorlayer.layers import *
import os
trainsize=35680
testsize=889
batch_size=32
inputW=224
inputH=480
TRAIN_TFRECORD='./train.tfrecords'
TEST_TFRECORD='./test.tfrecords'
BATCH_CAPACITY=512
MIN_AFTER_DEQU=256
MAX_Cycle=100000
TRAIN_CYCLE=int(trainsize/batch_size)
TEST_CYCLE=int(testsize/batch_size)
learning_rt = 0.001
savepath='./ckpt/'
logpath='./logs/'
def network(inputs,is_train,reuse):
BITW =8
BITA=8
Decay=0.99
Epsi=1e-5
with tf.variable_scope('Model',reuse=reuse):
net=InputLayer(inputs,name='input') #224*480
net=QuanConv2dWithBN(net,32,(3,3),(1,1),'SAME',tf.nn.relu, decay=Decay, epsilon=Epsi, is_train=is_train, bitW=BITW,bitA=BITA,name='Conv1_1')
net=QuanConv2dWithBN(net,64,(3,3),(2,2),'SAME',tf.nn.relu, decay=Decay, epsilon=Epsi, is_train=is_train, bitW=BITW,bitA=BITA,name='Conv1_2') #112*240
net=QuanConv2dWithBN(net,64,(3,3),(1,1),'SAME',tf.nn.relu,decay=Decay, epsilon=Epsi, is_train=is_train, bitW=BITW,bitA=BITA,name='Conv2_1')
net=QuanConv2dWithBN(net,128,(3,3),(2,2),'SAME',tf.nn.relu,decay=Decay, epsilon=Epsi, is_train=is_train, bitW=BITW,bitA=BITA,name='Conv2_2') #56*120
net=QuanConv2dWithBN(net,128,(3,3),(1,1),'SAME',tf.nn.relu,decay=Decay, epsilon=Epsi, is_train=is_train, bitW=BITW,bitA=BITA,name='Conv3_1')
net=QuanConv2dWithBN(net,64,(1,1),(1,1),'SAME',tf.nn.relu,decay=Decay, epsilon=Epsi, is_train=is_train, bitW=BITW,bitA=BITA,name='Conv3_2')
net=QuanConv2dWithBN(net,128,(3,3),(2,2),'SAME',tf.nn.relu,decay=Decay, epsilon=Epsi, is_train=is_train, bitW=BITW,bitA=BITA,name='Conv3_3') #28*60
net=QuanConv2dWithBN(net,64,(3,3),(1,1),'SAME',tf.nn.relu,decay=Decay, epsilon=Epsi, is_train=is_train, bitW=BITW,bitA=BITA,name='Conv4_1')
net=QuanConv2dWithBN(net,96,(3,3),(2,2),'VALID',tf.nn.relu,decay=Decay, epsilon=Epsi, is_train=is_train, bitW=BITW,bitA=BITA,name='Conv4_2') #14*30
print(net.outputs)
net=QuanConv2dWithBN(net,128,(3,3),(2,2),'SAME',tf.nn.relu,decay=Decay, epsilon=Epsi, is_train=is_train, bitW=BITW,bitA=BITA,name='Conv5_1') #7*30
net=QuanConv2dWithBN(net,128,(3,3),(1,2),'VALID',tf.nn.relu,decay=Decay, epsilon=Epsi, is_train=is_train, bitW=BITW,bitA=BITA,name='Conv5_2') #3*30
net=QuanConv2d(net,128,(3,3),(1,2),'VALID',tf.nn.leaky_relu,bitW=BITW,bitA=BITA,name='Conv5_3') #1*30
print(net.outputs)
net=FlattenLayer(net,name='flat1')
net=QuanDenseLayer(net,128,act=tf.nn.leaky_relu,bitW=BITW,bitA=BITA,name='dense1')
net=DropoutLayer(net,0.5,is_fix=True,is_train=is_train,name='drop1')
net=DenseLayer(net,1,name='dense2')
outnet=net
volcume=net.outputs
print(volcume)
return outnet,net.outputs,volcume
def inference(inputs,is_train,reuse):
return network(inputs,is_train,reuse)
def read_and_decode(filename):
filename_queue = tf.train.string_input_producer([filename])
reader = tf.TFRecordReader()
_, serialized_example = reader.read(filename_queue)
features = tf.parse_single_example(serialized_example,
features={
'img': tf.FixedLenFeature(, tf.string),
'num' : tf.FixedLenFeature(, tf.float32),
})
img = tf.decode_raw(features['img'], tf.uint8)
img = tf.reshape(img, [480, 240, 3])
img=tf.random_crop(img,[480,224,3])
img = tf.image.random_brightness(img, max_delta=0.3)
img = tf.image.random_contrast(img, lower=0.1, upper=0.5)
# img = tf.image.random_hue(img, max_delta=0.1)
# img = tf.image.random_saturation(img, lower=0, upper=2.5)
img = tf.image.per_image_standardization(img)
label = tf.reshape( tf.cast(features['num'], tf.float32)*(1./230.)-0.5,[1])
return img, label
def read_and_decode_test(filename):
filename_queue = tf.train.string_input_producer([filename])
reader = tf.TFRecordReader()
_, serialized_example = reader.read(filename_queue)
features = tf.parse_single_example(serialized_example,
features={
'img': tf.FixedLenFeature(, tf.string),
'num' : tf.FixedLenFeature(, tf.float32),
})
img = tf.decode_raw(features['img'], tf.uint8)
img = tf.reshape(img, [480, 240, 3])
img=img[:,8:232,:]
img = tf.image.per_image_standardization(img)
label = tf.reshape( tf.cast(features['num'], tf.float32)*(1./230.)-0.5,[1])
return img, label
def smooth_L1(x):
return tf.where(tf.less_equal(tf.abs(x), 1.0), tf.multiply(0.5, tf.pow(x, 2.0)), tf.subtract(tf.abs(x), 0.5))
def cal_loss(logits,labels):
# return tf.clip_by_value(tf.reduce_mean(tf.losses.mean_squared_error(labels,logits)) ,0.000001,10000000.)
return tf.reduce_mean(tf.where(tf.less_equal(tf.abs(logits-labels), 0.02),0.00001*tf.ones_like(logits-labels), tf.multiply(1., tf.pow(logits-labels, 2.0))))
# return tf.clip_by_value(tf.reduce_sum(smooth_L1(labels-logits)),0.0000001,100.)
def cal_acc(logits,labels):
return tf.reduce_mean( tf.cast( tf.less_equal(tf.abs(labels-logits),tf.ones_like(labels)*.1),tf.float32))
if __name__ == '__main__':
img_train,num_train = read_and_decode(TRAIN_TFRECORD)
img_test,num_test = read_and_decode(TEST_TFRECORD)
img_train_batch, num_train_batch = tf.train.shuffle_batch(
[img_train, num_train], batch_size=batch_size, capacity=BATCH_CAPACITY,
min_after_dequeue=MIN_AFTER_DEQU)
img_test_batch, num_test_batch = tf.train.batch(
[img_test,num_test], batch_size=batch_size)
net,_,logits_train=inference(img_train_batch,True,None)
_,_,logits_test=inference(img_test_batch,False,True)
loss_train=cal_loss(logits_train,num_train_batch)
loss_test=cal_loss(logits_test,num_test_batch)
acc_test=cal_acc(logits_test,num_test_batch)
acc_train=cal_acc(logits_train,num_train_batch)
global_step=tf.train.create_global_step()
#tf.train.get_global_step()
learning_rate=tf.train.exponential_decay(learning_rt, global_step,
5000, 0.9, staircase=True)
train = tf.train.MomentumOptimizer(learning_rate,momentum=0.9).minimize(loss_train,global_step=global_step)
# train = tf.train.AdamOptimizer(learning_rt).minimize(loss_train)
tf.summary.scalar('loss_train', loss_train)
tf.summary.scalar('acc_train', acc_train)
merged = tf.summary.merge_all()
with tf.Session(config=tf.ConfigProto()) as sess:
trainwrite = tf.summary.FileWriter(logpath, sess.graph)
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(sess=sess, coord=coord)
sess.run(tf.global_variables_initializer())
saver = tf.train.Saver()
run_cycle=0
if os.path.exists(savepath+'313.ckpt.index') :
print('nStart Restore')
saver.restore(sess, savepath+'33.ckpt')
print('nEnd Restore')
print('nStart Training')
try:
while not coord.should_stop():
while run_cycle < MAX_Cycle:
run_cycle+=1
# if run_cycle%10==0:
# learning_rt*=0.6
# if run_cycle%200==0:
# learning_rt*=2.
l_tall=0
a_tall=0
l_teall=0
a_teall=0
for train_c in range(TRAIN_CYCLE):
_,l_train,a_train=sess.run([train,loss_train,acc_train])
l_tall+=l_train
a_tall+=a_train
if (train_c+1)%100==0:
print('train_loss:%f'%(l_tall/100.))
print('train_acc:%f'%(a_tall/100.))
l_tall = 0
a_tall = 0
if (train_c+1)%500==0:
print('Global Step:',sess.run(global_step))
result_merged=sess.run(merged)
trainwrite.add_summary(result_merged, run_cycle*TRAIN_CYCLE+train_c)
for test_c in range(TEST_CYCLE):
l_test,a_test=sess.run([loss_test,acc_test])
l_teall+=l_test
a_teall+=a_test
if (test_c+1)%TEST_CYCLE==0:
print('------------------')
print('test_loss:%f'%(l_teall/TEST_CYCLE))
print('test_acc:%f'%(a_teall/TEST_CYCLE))
print('------------------')
l_teall = 0
l_teall = 0
saver.save(sess, savepath+ str(run_cycle) + '.ckpt')
except tf.errors.OutOfRangeError:
print('Done training!!!')
finally:
# When done, ask the threads to stop.
coord.request_stop()
coord.join(threads)
sess.close()
Freeze code
import os, argparse
import tensorflow as tf
from tensorflow.python.framework import graph_util
dir = os.path.dirname(os.path.realpath(__file__))
def freeze_graph(model_folder, output_nodes='y_hat',
output_filename='frozen-graph.pb',
rename_outputs=None):
# Load checkpoint
checkpoint = tf.train.get_checkpoint_state(model_folder)
input_checkpoint = checkpoint.model_checkpoint_path
output_graph = output_filename
# Devices should be cleared to allow Tensorflow to control placement of
# graph when loading on different machines
saver = tf.train.import_meta_graph(input_checkpoint + '.meta',
clear_devices=True)
graph = tf.get_default_graph()
onames = output_nodes.split(',')
# https://stackoverflow.com/a/34399966/4190475
if rename_outputs is not None:
nnames = rename_outputs.split(',')
with graph.as_default():
for o, n in zip(onames, nnames):
_out = tf.identity(graph.get_tensor_by_name(o + ':0'), name=n)
onames = nnames
input_graph_def = graph.as_graph_def()
# fix batch norm nodes
for node in input_graph_def.node:
if node.op == 'RefSwitch':
node.op = 'Switch'
for index in range(len(node.input)):
if 'moving_' in node.input[index]:
node.input[index] = node.input[index] + '/read'
elif node.op == 'AssignSub':
node.op = 'Sub'
if 'use_locking' in node.attr: del node.attr['use_locking']
with tf.Session(graph=graph) as sess:
saver.restore(sess, input_checkpoint)
# In production, graph weights no longer need to be updated
# graph_util provides utility to change all variables to constants
output_graph_def = graph_util.convert_variables_to_constants(
sess, input_graph_def,
onames # unrelated nodes will be discarded
)
# Serialize and write to file
with tf.gfile.GFile(output_graph, "wb") as f:
f.write(output_graph_def.SerializeToString())
print("%d ops in the final graph." % len(output_graph_def.node))
if __name__ == '__main__':
parser = argparse.ArgumentParser(
description='Prune and freeze weights from checkpoints into production models')
parser.add_argument("--checkpoint_path",
default='./regressionDir/',
type=str, help="Path to checkpoint files")
parser.add_argument("--output_nodes",
default='Model/dense2/bias_add',
type=str, help="Names of output node, comma seperated")
parser.add_argument("--output_graph",
default='reg.pb',
type=str, help="Output graph filename")
parser.add_argument("--rename_outputs",
default='out_vol',
type=str, help="Rename output nodes for better
readability in production graph, to be specified in
the same order as output_nodes")
args = parser.parse_args()
freeze_graph(args.checkpoint_path, args.output_nodes, args.output_graph, args.rename_outputs)
Test inference code
import tensorflow as tf
import numpy as np
from PIL import Image
import time
gf = tf.GraphDef()
gf.ParseFromString(open('reg.pb', 'rb').read())
print([n.name + '=>' + n.op for n in gf.node])
output_graph_path = './reg.pb'
with tf.Session() as sess:
tf.global_variables_initializer().run()
output_graph_def = tf.GraphDef()
with open(output_graph_path, "rb") as f:
output_graph_def.ParseFromString(f.read())
_ = tf.import_graph_def(output_graph_def, name="")
input_img = sess.graph.get_tensor_by_name("shuffle_batch:0")
print(input_img)
out_vol = sess.graph.get_tensor_by_name("out_vol:0")
out_voln = sess.graph.get_tensor_by_name("shuffle_batch:0")
a = np.random.random([48, 480, 224, 3])
for x in range(100):
ntime1 = time.time()
vol = sess.run(out_vol, {input_img: a})
ntime2 = time.time()
print(ntime2 - ntime1)
tensorflow
add a comment |
I used tf.train.shuffle_batch
while training, and do not use any placeholder, when I freezed the ckpt to pb file, I did not get any input tensor, though I can feed thing to shuffle_batch
tensor, but it need the feed has the same size with the shuffle_batch
data. How to fix it? I know I can rewrite a net and restore params, then freeze, but it is not wise?
The train
import tensorflow as tf
import tensorlayer as tl
from tensorlayer.layers import *
import os
trainsize=35680
testsize=889
batch_size=32
inputW=224
inputH=480
TRAIN_TFRECORD='./train.tfrecords'
TEST_TFRECORD='./test.tfrecords'
BATCH_CAPACITY=512
MIN_AFTER_DEQU=256
MAX_Cycle=100000
TRAIN_CYCLE=int(trainsize/batch_size)
TEST_CYCLE=int(testsize/batch_size)
learning_rt = 0.001
savepath='./ckpt/'
logpath='./logs/'
def network(inputs,is_train,reuse):
BITW =8
BITA=8
Decay=0.99
Epsi=1e-5
with tf.variable_scope('Model',reuse=reuse):
net=InputLayer(inputs,name='input') #224*480
net=QuanConv2dWithBN(net,32,(3,3),(1,1),'SAME',tf.nn.relu, decay=Decay, epsilon=Epsi, is_train=is_train, bitW=BITW,bitA=BITA,name='Conv1_1')
net=QuanConv2dWithBN(net,64,(3,3),(2,2),'SAME',tf.nn.relu, decay=Decay, epsilon=Epsi, is_train=is_train, bitW=BITW,bitA=BITA,name='Conv1_2') #112*240
net=QuanConv2dWithBN(net,64,(3,3),(1,1),'SAME',tf.nn.relu,decay=Decay, epsilon=Epsi, is_train=is_train, bitW=BITW,bitA=BITA,name='Conv2_1')
net=QuanConv2dWithBN(net,128,(3,3),(2,2),'SAME',tf.nn.relu,decay=Decay, epsilon=Epsi, is_train=is_train, bitW=BITW,bitA=BITA,name='Conv2_2') #56*120
net=QuanConv2dWithBN(net,128,(3,3),(1,1),'SAME',tf.nn.relu,decay=Decay, epsilon=Epsi, is_train=is_train, bitW=BITW,bitA=BITA,name='Conv3_1')
net=QuanConv2dWithBN(net,64,(1,1),(1,1),'SAME',tf.nn.relu,decay=Decay, epsilon=Epsi, is_train=is_train, bitW=BITW,bitA=BITA,name='Conv3_2')
net=QuanConv2dWithBN(net,128,(3,3),(2,2),'SAME',tf.nn.relu,decay=Decay, epsilon=Epsi, is_train=is_train, bitW=BITW,bitA=BITA,name='Conv3_3') #28*60
net=QuanConv2dWithBN(net,64,(3,3),(1,1),'SAME',tf.nn.relu,decay=Decay, epsilon=Epsi, is_train=is_train, bitW=BITW,bitA=BITA,name='Conv4_1')
net=QuanConv2dWithBN(net,96,(3,3),(2,2),'VALID',tf.nn.relu,decay=Decay, epsilon=Epsi, is_train=is_train, bitW=BITW,bitA=BITA,name='Conv4_2') #14*30
print(net.outputs)
net=QuanConv2dWithBN(net,128,(3,3),(2,2),'SAME',tf.nn.relu,decay=Decay, epsilon=Epsi, is_train=is_train, bitW=BITW,bitA=BITA,name='Conv5_1') #7*30
net=QuanConv2dWithBN(net,128,(3,3),(1,2),'VALID',tf.nn.relu,decay=Decay, epsilon=Epsi, is_train=is_train, bitW=BITW,bitA=BITA,name='Conv5_2') #3*30
net=QuanConv2d(net,128,(3,3),(1,2),'VALID',tf.nn.leaky_relu,bitW=BITW,bitA=BITA,name='Conv5_3') #1*30
print(net.outputs)
net=FlattenLayer(net,name='flat1')
net=QuanDenseLayer(net,128,act=tf.nn.leaky_relu,bitW=BITW,bitA=BITA,name='dense1')
net=DropoutLayer(net,0.5,is_fix=True,is_train=is_train,name='drop1')
net=DenseLayer(net,1,name='dense2')
outnet=net
volcume=net.outputs
print(volcume)
return outnet,net.outputs,volcume
def inference(inputs,is_train,reuse):
return network(inputs,is_train,reuse)
def read_and_decode(filename):
filename_queue = tf.train.string_input_producer([filename])
reader = tf.TFRecordReader()
_, serialized_example = reader.read(filename_queue)
features = tf.parse_single_example(serialized_example,
features={
'img': tf.FixedLenFeature(, tf.string),
'num' : tf.FixedLenFeature(, tf.float32),
})
img = tf.decode_raw(features['img'], tf.uint8)
img = tf.reshape(img, [480, 240, 3])
img=tf.random_crop(img,[480,224,3])
img = tf.image.random_brightness(img, max_delta=0.3)
img = tf.image.random_contrast(img, lower=0.1, upper=0.5)
# img = tf.image.random_hue(img, max_delta=0.1)
# img = tf.image.random_saturation(img, lower=0, upper=2.5)
img = tf.image.per_image_standardization(img)
label = tf.reshape( tf.cast(features['num'], tf.float32)*(1./230.)-0.5,[1])
return img, label
def read_and_decode_test(filename):
filename_queue = tf.train.string_input_producer([filename])
reader = tf.TFRecordReader()
_, serialized_example = reader.read(filename_queue)
features = tf.parse_single_example(serialized_example,
features={
'img': tf.FixedLenFeature(, tf.string),
'num' : tf.FixedLenFeature(, tf.float32),
})
img = tf.decode_raw(features['img'], tf.uint8)
img = tf.reshape(img, [480, 240, 3])
img=img[:,8:232,:]
img = tf.image.per_image_standardization(img)
label = tf.reshape( tf.cast(features['num'], tf.float32)*(1./230.)-0.5,[1])
return img, label
def smooth_L1(x):
return tf.where(tf.less_equal(tf.abs(x), 1.0), tf.multiply(0.5, tf.pow(x, 2.0)), tf.subtract(tf.abs(x), 0.5))
def cal_loss(logits,labels):
# return tf.clip_by_value(tf.reduce_mean(tf.losses.mean_squared_error(labels,logits)) ,0.000001,10000000.)
return tf.reduce_mean(tf.where(tf.less_equal(tf.abs(logits-labels), 0.02),0.00001*tf.ones_like(logits-labels), tf.multiply(1., tf.pow(logits-labels, 2.0))))
# return tf.clip_by_value(tf.reduce_sum(smooth_L1(labels-logits)),0.0000001,100.)
def cal_acc(logits,labels):
return tf.reduce_mean( tf.cast( tf.less_equal(tf.abs(labels-logits),tf.ones_like(labels)*.1),tf.float32))
if __name__ == '__main__':
img_train,num_train = read_and_decode(TRAIN_TFRECORD)
img_test,num_test = read_and_decode(TEST_TFRECORD)
img_train_batch, num_train_batch = tf.train.shuffle_batch(
[img_train, num_train], batch_size=batch_size, capacity=BATCH_CAPACITY,
min_after_dequeue=MIN_AFTER_DEQU)
img_test_batch, num_test_batch = tf.train.batch(
[img_test,num_test], batch_size=batch_size)
net,_,logits_train=inference(img_train_batch,True,None)
_,_,logits_test=inference(img_test_batch,False,True)
loss_train=cal_loss(logits_train,num_train_batch)
loss_test=cal_loss(logits_test,num_test_batch)
acc_test=cal_acc(logits_test,num_test_batch)
acc_train=cal_acc(logits_train,num_train_batch)
global_step=tf.train.create_global_step()
#tf.train.get_global_step()
learning_rate=tf.train.exponential_decay(learning_rt, global_step,
5000, 0.9, staircase=True)
train = tf.train.MomentumOptimizer(learning_rate,momentum=0.9).minimize(loss_train,global_step=global_step)
# train = tf.train.AdamOptimizer(learning_rt).minimize(loss_train)
tf.summary.scalar('loss_train', loss_train)
tf.summary.scalar('acc_train', acc_train)
merged = tf.summary.merge_all()
with tf.Session(config=tf.ConfigProto()) as sess:
trainwrite = tf.summary.FileWriter(logpath, sess.graph)
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(sess=sess, coord=coord)
sess.run(tf.global_variables_initializer())
saver = tf.train.Saver()
run_cycle=0
if os.path.exists(savepath+'313.ckpt.index') :
print('nStart Restore')
saver.restore(sess, savepath+'33.ckpt')
print('nEnd Restore')
print('nStart Training')
try:
while not coord.should_stop():
while run_cycle < MAX_Cycle:
run_cycle+=1
# if run_cycle%10==0:
# learning_rt*=0.6
# if run_cycle%200==0:
# learning_rt*=2.
l_tall=0
a_tall=0
l_teall=0
a_teall=0
for train_c in range(TRAIN_CYCLE):
_,l_train,a_train=sess.run([train,loss_train,acc_train])
l_tall+=l_train
a_tall+=a_train
if (train_c+1)%100==0:
print('train_loss:%f'%(l_tall/100.))
print('train_acc:%f'%(a_tall/100.))
l_tall = 0
a_tall = 0
if (train_c+1)%500==0:
print('Global Step:',sess.run(global_step))
result_merged=sess.run(merged)
trainwrite.add_summary(result_merged, run_cycle*TRAIN_CYCLE+train_c)
for test_c in range(TEST_CYCLE):
l_test,a_test=sess.run([loss_test,acc_test])
l_teall+=l_test
a_teall+=a_test
if (test_c+1)%TEST_CYCLE==0:
print('------------------')
print('test_loss:%f'%(l_teall/TEST_CYCLE))
print('test_acc:%f'%(a_teall/TEST_CYCLE))
print('------------------')
l_teall = 0
l_teall = 0
saver.save(sess, savepath+ str(run_cycle) + '.ckpt')
except tf.errors.OutOfRangeError:
print('Done training!!!')
finally:
# When done, ask the threads to stop.
coord.request_stop()
coord.join(threads)
sess.close()
Freeze code
import os, argparse
import tensorflow as tf
from tensorflow.python.framework import graph_util
dir = os.path.dirname(os.path.realpath(__file__))
def freeze_graph(model_folder, output_nodes='y_hat',
output_filename='frozen-graph.pb',
rename_outputs=None):
# Load checkpoint
checkpoint = tf.train.get_checkpoint_state(model_folder)
input_checkpoint = checkpoint.model_checkpoint_path
output_graph = output_filename
# Devices should be cleared to allow Tensorflow to control placement of
# graph when loading on different machines
saver = tf.train.import_meta_graph(input_checkpoint + '.meta',
clear_devices=True)
graph = tf.get_default_graph()
onames = output_nodes.split(',')
# https://stackoverflow.com/a/34399966/4190475
if rename_outputs is not None:
nnames = rename_outputs.split(',')
with graph.as_default():
for o, n in zip(onames, nnames):
_out = tf.identity(graph.get_tensor_by_name(o + ':0'), name=n)
onames = nnames
input_graph_def = graph.as_graph_def()
# fix batch norm nodes
for node in input_graph_def.node:
if node.op == 'RefSwitch':
node.op = 'Switch'
for index in range(len(node.input)):
if 'moving_' in node.input[index]:
node.input[index] = node.input[index] + '/read'
elif node.op == 'AssignSub':
node.op = 'Sub'
if 'use_locking' in node.attr: del node.attr['use_locking']
with tf.Session(graph=graph) as sess:
saver.restore(sess, input_checkpoint)
# In production, graph weights no longer need to be updated
# graph_util provides utility to change all variables to constants
output_graph_def = graph_util.convert_variables_to_constants(
sess, input_graph_def,
onames # unrelated nodes will be discarded
)
# Serialize and write to file
with tf.gfile.GFile(output_graph, "wb") as f:
f.write(output_graph_def.SerializeToString())
print("%d ops in the final graph." % len(output_graph_def.node))
if __name__ == '__main__':
parser = argparse.ArgumentParser(
description='Prune and freeze weights from checkpoints into production models')
parser.add_argument("--checkpoint_path",
default='./regressionDir/',
type=str, help="Path to checkpoint files")
parser.add_argument("--output_nodes",
default='Model/dense2/bias_add',
type=str, help="Names of output node, comma seperated")
parser.add_argument("--output_graph",
default='reg.pb',
type=str, help="Output graph filename")
parser.add_argument("--rename_outputs",
default='out_vol',
type=str, help="Rename output nodes for better
readability in production graph, to be specified in
the same order as output_nodes")
args = parser.parse_args()
freeze_graph(args.checkpoint_path, args.output_nodes, args.output_graph, args.rename_outputs)
Test inference code
import tensorflow as tf
import numpy as np
from PIL import Image
import time
gf = tf.GraphDef()
gf.ParseFromString(open('reg.pb', 'rb').read())
print([n.name + '=>' + n.op for n in gf.node])
output_graph_path = './reg.pb'
with tf.Session() as sess:
tf.global_variables_initializer().run()
output_graph_def = tf.GraphDef()
with open(output_graph_path, "rb") as f:
output_graph_def.ParseFromString(f.read())
_ = tf.import_graph_def(output_graph_def, name="")
input_img = sess.graph.get_tensor_by_name("shuffle_batch:0")
print(input_img)
out_vol = sess.graph.get_tensor_by_name("out_vol:0")
out_voln = sess.graph.get_tensor_by_name("shuffle_batch:0")
a = np.random.random([48, 480, 224, 3])
for x in range(100):
ntime1 = time.time()
vol = sess.run(out_vol, {input_img: a})
ntime2 = time.time()
print(ntime2 - ntime1)
tensorflow
1
Please try to provide a minimal working example of your code, so we can see what you're actually doing. It may be worth taking a look at stackoverflow.com/help/how-to-ask
– Dan Rayson
Nov 28 '18 at 13:44
add a comment |
I used tf.train.shuffle_batch
while training, and do not use any placeholder, when I freezed the ckpt to pb file, I did not get any input tensor, though I can feed thing to shuffle_batch
tensor, but it need the feed has the same size with the shuffle_batch
data. How to fix it? I know I can rewrite a net and restore params, then freeze, but it is not wise?
The train
import tensorflow as tf
import tensorlayer as tl
from tensorlayer.layers import *
import os
trainsize=35680
testsize=889
batch_size=32
inputW=224
inputH=480
TRAIN_TFRECORD='./train.tfrecords'
TEST_TFRECORD='./test.tfrecords'
BATCH_CAPACITY=512
MIN_AFTER_DEQU=256
MAX_Cycle=100000
TRAIN_CYCLE=int(trainsize/batch_size)
TEST_CYCLE=int(testsize/batch_size)
learning_rt = 0.001
savepath='./ckpt/'
logpath='./logs/'
def network(inputs,is_train,reuse):
BITW =8
BITA=8
Decay=0.99
Epsi=1e-5
with tf.variable_scope('Model',reuse=reuse):
net=InputLayer(inputs,name='input') #224*480
net=QuanConv2dWithBN(net,32,(3,3),(1,1),'SAME',tf.nn.relu, decay=Decay, epsilon=Epsi, is_train=is_train, bitW=BITW,bitA=BITA,name='Conv1_1')
net=QuanConv2dWithBN(net,64,(3,3),(2,2),'SAME',tf.nn.relu, decay=Decay, epsilon=Epsi, is_train=is_train, bitW=BITW,bitA=BITA,name='Conv1_2') #112*240
net=QuanConv2dWithBN(net,64,(3,3),(1,1),'SAME',tf.nn.relu,decay=Decay, epsilon=Epsi, is_train=is_train, bitW=BITW,bitA=BITA,name='Conv2_1')
net=QuanConv2dWithBN(net,128,(3,3),(2,2),'SAME',tf.nn.relu,decay=Decay, epsilon=Epsi, is_train=is_train, bitW=BITW,bitA=BITA,name='Conv2_2') #56*120
net=QuanConv2dWithBN(net,128,(3,3),(1,1),'SAME',tf.nn.relu,decay=Decay, epsilon=Epsi, is_train=is_train, bitW=BITW,bitA=BITA,name='Conv3_1')
net=QuanConv2dWithBN(net,64,(1,1),(1,1),'SAME',tf.nn.relu,decay=Decay, epsilon=Epsi, is_train=is_train, bitW=BITW,bitA=BITA,name='Conv3_2')
net=QuanConv2dWithBN(net,128,(3,3),(2,2),'SAME',tf.nn.relu,decay=Decay, epsilon=Epsi, is_train=is_train, bitW=BITW,bitA=BITA,name='Conv3_3') #28*60
net=QuanConv2dWithBN(net,64,(3,3),(1,1),'SAME',tf.nn.relu,decay=Decay, epsilon=Epsi, is_train=is_train, bitW=BITW,bitA=BITA,name='Conv4_1')
net=QuanConv2dWithBN(net,96,(3,3),(2,2),'VALID',tf.nn.relu,decay=Decay, epsilon=Epsi, is_train=is_train, bitW=BITW,bitA=BITA,name='Conv4_2') #14*30
print(net.outputs)
net=QuanConv2dWithBN(net,128,(3,3),(2,2),'SAME',tf.nn.relu,decay=Decay, epsilon=Epsi, is_train=is_train, bitW=BITW,bitA=BITA,name='Conv5_1') #7*30
net=QuanConv2dWithBN(net,128,(3,3),(1,2),'VALID',tf.nn.relu,decay=Decay, epsilon=Epsi, is_train=is_train, bitW=BITW,bitA=BITA,name='Conv5_2') #3*30
net=QuanConv2d(net,128,(3,3),(1,2),'VALID',tf.nn.leaky_relu,bitW=BITW,bitA=BITA,name='Conv5_3') #1*30
print(net.outputs)
net=FlattenLayer(net,name='flat1')
net=QuanDenseLayer(net,128,act=tf.nn.leaky_relu,bitW=BITW,bitA=BITA,name='dense1')
net=DropoutLayer(net,0.5,is_fix=True,is_train=is_train,name='drop1')
net=DenseLayer(net,1,name='dense2')
outnet=net
volcume=net.outputs
print(volcume)
return outnet,net.outputs,volcume
def inference(inputs,is_train,reuse):
return network(inputs,is_train,reuse)
def read_and_decode(filename):
filename_queue = tf.train.string_input_producer([filename])
reader = tf.TFRecordReader()
_, serialized_example = reader.read(filename_queue)
features = tf.parse_single_example(serialized_example,
features={
'img': tf.FixedLenFeature(, tf.string),
'num' : tf.FixedLenFeature(, tf.float32),
})
img = tf.decode_raw(features['img'], tf.uint8)
img = tf.reshape(img, [480, 240, 3])
img=tf.random_crop(img,[480,224,3])
img = tf.image.random_brightness(img, max_delta=0.3)
img = tf.image.random_contrast(img, lower=0.1, upper=0.5)
# img = tf.image.random_hue(img, max_delta=0.1)
# img = tf.image.random_saturation(img, lower=0, upper=2.5)
img = tf.image.per_image_standardization(img)
label = tf.reshape( tf.cast(features['num'], tf.float32)*(1./230.)-0.5,[1])
return img, label
def read_and_decode_test(filename):
filename_queue = tf.train.string_input_producer([filename])
reader = tf.TFRecordReader()
_, serialized_example = reader.read(filename_queue)
features = tf.parse_single_example(serialized_example,
features={
'img': tf.FixedLenFeature(, tf.string),
'num' : tf.FixedLenFeature(, tf.float32),
})
img = tf.decode_raw(features['img'], tf.uint8)
img = tf.reshape(img, [480, 240, 3])
img=img[:,8:232,:]
img = tf.image.per_image_standardization(img)
label = tf.reshape( tf.cast(features['num'], tf.float32)*(1./230.)-0.5,[1])
return img, label
def smooth_L1(x):
return tf.where(tf.less_equal(tf.abs(x), 1.0), tf.multiply(0.5, tf.pow(x, 2.0)), tf.subtract(tf.abs(x), 0.5))
def cal_loss(logits,labels):
# return tf.clip_by_value(tf.reduce_mean(tf.losses.mean_squared_error(labels,logits)) ,0.000001,10000000.)
return tf.reduce_mean(tf.where(tf.less_equal(tf.abs(logits-labels), 0.02),0.00001*tf.ones_like(logits-labels), tf.multiply(1., tf.pow(logits-labels, 2.0))))
# return tf.clip_by_value(tf.reduce_sum(smooth_L1(labels-logits)),0.0000001,100.)
def cal_acc(logits,labels):
return tf.reduce_mean( tf.cast( tf.less_equal(tf.abs(labels-logits),tf.ones_like(labels)*.1),tf.float32))
if __name__ == '__main__':
img_train,num_train = read_and_decode(TRAIN_TFRECORD)
img_test,num_test = read_and_decode(TEST_TFRECORD)
img_train_batch, num_train_batch = tf.train.shuffle_batch(
[img_train, num_train], batch_size=batch_size, capacity=BATCH_CAPACITY,
min_after_dequeue=MIN_AFTER_DEQU)
img_test_batch, num_test_batch = tf.train.batch(
[img_test,num_test], batch_size=batch_size)
net,_,logits_train=inference(img_train_batch,True,None)
_,_,logits_test=inference(img_test_batch,False,True)
loss_train=cal_loss(logits_train,num_train_batch)
loss_test=cal_loss(logits_test,num_test_batch)
acc_test=cal_acc(logits_test,num_test_batch)
acc_train=cal_acc(logits_train,num_train_batch)
global_step=tf.train.create_global_step()
#tf.train.get_global_step()
learning_rate=tf.train.exponential_decay(learning_rt, global_step,
5000, 0.9, staircase=True)
train = tf.train.MomentumOptimizer(learning_rate,momentum=0.9).minimize(loss_train,global_step=global_step)
# train = tf.train.AdamOptimizer(learning_rt).minimize(loss_train)
tf.summary.scalar('loss_train', loss_train)
tf.summary.scalar('acc_train', acc_train)
merged = tf.summary.merge_all()
with tf.Session(config=tf.ConfigProto()) as sess:
trainwrite = tf.summary.FileWriter(logpath, sess.graph)
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(sess=sess, coord=coord)
sess.run(tf.global_variables_initializer())
saver = tf.train.Saver()
run_cycle=0
if os.path.exists(savepath+'313.ckpt.index') :
print('nStart Restore')
saver.restore(sess, savepath+'33.ckpt')
print('nEnd Restore')
print('nStart Training')
try:
while not coord.should_stop():
while run_cycle < MAX_Cycle:
run_cycle+=1
# if run_cycle%10==0:
# learning_rt*=0.6
# if run_cycle%200==0:
# learning_rt*=2.
l_tall=0
a_tall=0
l_teall=0
a_teall=0
for train_c in range(TRAIN_CYCLE):
_,l_train,a_train=sess.run([train,loss_train,acc_train])
l_tall+=l_train
a_tall+=a_train
if (train_c+1)%100==0:
print('train_loss:%f'%(l_tall/100.))
print('train_acc:%f'%(a_tall/100.))
l_tall = 0
a_tall = 0
if (train_c+1)%500==0:
print('Global Step:',sess.run(global_step))
result_merged=sess.run(merged)
trainwrite.add_summary(result_merged, run_cycle*TRAIN_CYCLE+train_c)
for test_c in range(TEST_CYCLE):
l_test,a_test=sess.run([loss_test,acc_test])
l_teall+=l_test
a_teall+=a_test
if (test_c+1)%TEST_CYCLE==0:
print('------------------')
print('test_loss:%f'%(l_teall/TEST_CYCLE))
print('test_acc:%f'%(a_teall/TEST_CYCLE))
print('------------------')
l_teall = 0
l_teall = 0
saver.save(sess, savepath+ str(run_cycle) + '.ckpt')
except tf.errors.OutOfRangeError:
print('Done training!!!')
finally:
# When done, ask the threads to stop.
coord.request_stop()
coord.join(threads)
sess.close()
Freeze code
import os, argparse
import tensorflow as tf
from tensorflow.python.framework import graph_util
dir = os.path.dirname(os.path.realpath(__file__))
def freeze_graph(model_folder, output_nodes='y_hat',
output_filename='frozen-graph.pb',
rename_outputs=None):
# Load checkpoint
checkpoint = tf.train.get_checkpoint_state(model_folder)
input_checkpoint = checkpoint.model_checkpoint_path
output_graph = output_filename
# Devices should be cleared to allow Tensorflow to control placement of
# graph when loading on different machines
saver = tf.train.import_meta_graph(input_checkpoint + '.meta',
clear_devices=True)
graph = tf.get_default_graph()
onames = output_nodes.split(',')
# https://stackoverflow.com/a/34399966/4190475
if rename_outputs is not None:
nnames = rename_outputs.split(',')
with graph.as_default():
for o, n in zip(onames, nnames):
_out = tf.identity(graph.get_tensor_by_name(o + ':0'), name=n)
onames = nnames
input_graph_def = graph.as_graph_def()
# fix batch norm nodes
for node in input_graph_def.node:
if node.op == 'RefSwitch':
node.op = 'Switch'
for index in range(len(node.input)):
if 'moving_' in node.input[index]:
node.input[index] = node.input[index] + '/read'
elif node.op == 'AssignSub':
node.op = 'Sub'
if 'use_locking' in node.attr: del node.attr['use_locking']
with tf.Session(graph=graph) as sess:
saver.restore(sess, input_checkpoint)
# In production, graph weights no longer need to be updated
# graph_util provides utility to change all variables to constants
output_graph_def = graph_util.convert_variables_to_constants(
sess, input_graph_def,
onames # unrelated nodes will be discarded
)
# Serialize and write to file
with tf.gfile.GFile(output_graph, "wb") as f:
f.write(output_graph_def.SerializeToString())
print("%d ops in the final graph." % len(output_graph_def.node))
if __name__ == '__main__':
parser = argparse.ArgumentParser(
description='Prune and freeze weights from checkpoints into production models')
parser.add_argument("--checkpoint_path",
default='./regressionDir/',
type=str, help="Path to checkpoint files")
parser.add_argument("--output_nodes",
default='Model/dense2/bias_add',
type=str, help="Names of output node, comma seperated")
parser.add_argument("--output_graph",
default='reg.pb',
type=str, help="Output graph filename")
parser.add_argument("--rename_outputs",
default='out_vol',
type=str, help="Rename output nodes for better
readability in production graph, to be specified in
the same order as output_nodes")
args = parser.parse_args()
freeze_graph(args.checkpoint_path, args.output_nodes, args.output_graph, args.rename_outputs)
Test inference code
import tensorflow as tf
import numpy as np
from PIL import Image
import time
gf = tf.GraphDef()
gf.ParseFromString(open('reg.pb', 'rb').read())
print([n.name + '=>' + n.op for n in gf.node])
output_graph_path = './reg.pb'
with tf.Session() as sess:
tf.global_variables_initializer().run()
output_graph_def = tf.GraphDef()
with open(output_graph_path, "rb") as f:
output_graph_def.ParseFromString(f.read())
_ = tf.import_graph_def(output_graph_def, name="")
input_img = sess.graph.get_tensor_by_name("shuffle_batch:0")
print(input_img)
out_vol = sess.graph.get_tensor_by_name("out_vol:0")
out_voln = sess.graph.get_tensor_by_name("shuffle_batch:0")
a = np.random.random([48, 480, 224, 3])
for x in range(100):
ntime1 = time.time()
vol = sess.run(out_vol, {input_img: a})
ntime2 = time.time()
print(ntime2 - ntime1)
tensorflow
I used tf.train.shuffle_batch
while training, and do not use any placeholder, when I freezed the ckpt to pb file, I did not get any input tensor, though I can feed thing to shuffle_batch
tensor, but it need the feed has the same size with the shuffle_batch
data. How to fix it? I know I can rewrite a net and restore params, then freeze, but it is not wise?
The train
import tensorflow as tf
import tensorlayer as tl
from tensorlayer.layers import *
import os
trainsize=35680
testsize=889
batch_size=32
inputW=224
inputH=480
TRAIN_TFRECORD='./train.tfrecords'
TEST_TFRECORD='./test.tfrecords'
BATCH_CAPACITY=512
MIN_AFTER_DEQU=256
MAX_Cycle=100000
TRAIN_CYCLE=int(trainsize/batch_size)
TEST_CYCLE=int(testsize/batch_size)
learning_rt = 0.001
savepath='./ckpt/'
logpath='./logs/'
def network(inputs,is_train,reuse):
BITW =8
BITA=8
Decay=0.99
Epsi=1e-5
with tf.variable_scope('Model',reuse=reuse):
net=InputLayer(inputs,name='input') #224*480
net=QuanConv2dWithBN(net,32,(3,3),(1,1),'SAME',tf.nn.relu, decay=Decay, epsilon=Epsi, is_train=is_train, bitW=BITW,bitA=BITA,name='Conv1_1')
net=QuanConv2dWithBN(net,64,(3,3),(2,2),'SAME',tf.nn.relu, decay=Decay, epsilon=Epsi, is_train=is_train, bitW=BITW,bitA=BITA,name='Conv1_2') #112*240
net=QuanConv2dWithBN(net,64,(3,3),(1,1),'SAME',tf.nn.relu,decay=Decay, epsilon=Epsi, is_train=is_train, bitW=BITW,bitA=BITA,name='Conv2_1')
net=QuanConv2dWithBN(net,128,(3,3),(2,2),'SAME',tf.nn.relu,decay=Decay, epsilon=Epsi, is_train=is_train, bitW=BITW,bitA=BITA,name='Conv2_2') #56*120
net=QuanConv2dWithBN(net,128,(3,3),(1,1),'SAME',tf.nn.relu,decay=Decay, epsilon=Epsi, is_train=is_train, bitW=BITW,bitA=BITA,name='Conv3_1')
net=QuanConv2dWithBN(net,64,(1,1),(1,1),'SAME',tf.nn.relu,decay=Decay, epsilon=Epsi, is_train=is_train, bitW=BITW,bitA=BITA,name='Conv3_2')
net=QuanConv2dWithBN(net,128,(3,3),(2,2),'SAME',tf.nn.relu,decay=Decay, epsilon=Epsi, is_train=is_train, bitW=BITW,bitA=BITA,name='Conv3_3') #28*60
net=QuanConv2dWithBN(net,64,(3,3),(1,1),'SAME',tf.nn.relu,decay=Decay, epsilon=Epsi, is_train=is_train, bitW=BITW,bitA=BITA,name='Conv4_1')
net=QuanConv2dWithBN(net,96,(3,3),(2,2),'VALID',tf.nn.relu,decay=Decay, epsilon=Epsi, is_train=is_train, bitW=BITW,bitA=BITA,name='Conv4_2') #14*30
print(net.outputs)
net=QuanConv2dWithBN(net,128,(3,3),(2,2),'SAME',tf.nn.relu,decay=Decay, epsilon=Epsi, is_train=is_train, bitW=BITW,bitA=BITA,name='Conv5_1') #7*30
net=QuanConv2dWithBN(net,128,(3,3),(1,2),'VALID',tf.nn.relu,decay=Decay, epsilon=Epsi, is_train=is_train, bitW=BITW,bitA=BITA,name='Conv5_2') #3*30
net=QuanConv2d(net,128,(3,3),(1,2),'VALID',tf.nn.leaky_relu,bitW=BITW,bitA=BITA,name='Conv5_3') #1*30
print(net.outputs)
net=FlattenLayer(net,name='flat1')
net=QuanDenseLayer(net,128,act=tf.nn.leaky_relu,bitW=BITW,bitA=BITA,name='dense1')
net=DropoutLayer(net,0.5,is_fix=True,is_train=is_train,name='drop1')
net=DenseLayer(net,1,name='dense2')
outnet=net
volcume=net.outputs
print(volcume)
return outnet,net.outputs,volcume
def inference(inputs,is_train,reuse):
return network(inputs,is_train,reuse)
def read_and_decode(filename):
filename_queue = tf.train.string_input_producer([filename])
reader = tf.TFRecordReader()
_, serialized_example = reader.read(filename_queue)
features = tf.parse_single_example(serialized_example,
features={
'img': tf.FixedLenFeature(, tf.string),
'num' : tf.FixedLenFeature(, tf.float32),
})
img = tf.decode_raw(features['img'], tf.uint8)
img = tf.reshape(img, [480, 240, 3])
img=tf.random_crop(img,[480,224,3])
img = tf.image.random_brightness(img, max_delta=0.3)
img = tf.image.random_contrast(img, lower=0.1, upper=0.5)
# img = tf.image.random_hue(img, max_delta=0.1)
# img = tf.image.random_saturation(img, lower=0, upper=2.5)
img = tf.image.per_image_standardization(img)
label = tf.reshape( tf.cast(features['num'], tf.float32)*(1./230.)-0.5,[1])
return img, label
def read_and_decode_test(filename):
filename_queue = tf.train.string_input_producer([filename])
reader = tf.TFRecordReader()
_, serialized_example = reader.read(filename_queue)
features = tf.parse_single_example(serialized_example,
features={
'img': tf.FixedLenFeature(, tf.string),
'num' : tf.FixedLenFeature(, tf.float32),
})
img = tf.decode_raw(features['img'], tf.uint8)
img = tf.reshape(img, [480, 240, 3])
img=img[:,8:232,:]
img = tf.image.per_image_standardization(img)
label = tf.reshape( tf.cast(features['num'], tf.float32)*(1./230.)-0.5,[1])
return img, label
def smooth_L1(x):
return tf.where(tf.less_equal(tf.abs(x), 1.0), tf.multiply(0.5, tf.pow(x, 2.0)), tf.subtract(tf.abs(x), 0.5))
def cal_loss(logits,labels):
# return tf.clip_by_value(tf.reduce_mean(tf.losses.mean_squared_error(labels,logits)) ,0.000001,10000000.)
return tf.reduce_mean(tf.where(tf.less_equal(tf.abs(logits-labels), 0.02),0.00001*tf.ones_like(logits-labels), tf.multiply(1., tf.pow(logits-labels, 2.0))))
# return tf.clip_by_value(tf.reduce_sum(smooth_L1(labels-logits)),0.0000001,100.)
def cal_acc(logits,labels):
return tf.reduce_mean( tf.cast( tf.less_equal(tf.abs(labels-logits),tf.ones_like(labels)*.1),tf.float32))
if __name__ == '__main__':
img_train,num_train = read_and_decode(TRAIN_TFRECORD)
img_test,num_test = read_and_decode(TEST_TFRECORD)
img_train_batch, num_train_batch = tf.train.shuffle_batch(
[img_train, num_train], batch_size=batch_size, capacity=BATCH_CAPACITY,
min_after_dequeue=MIN_AFTER_DEQU)
img_test_batch, num_test_batch = tf.train.batch(
[img_test,num_test], batch_size=batch_size)
net,_,logits_train=inference(img_train_batch,True,None)
_,_,logits_test=inference(img_test_batch,False,True)
loss_train=cal_loss(logits_train,num_train_batch)
loss_test=cal_loss(logits_test,num_test_batch)
acc_test=cal_acc(logits_test,num_test_batch)
acc_train=cal_acc(logits_train,num_train_batch)
global_step=tf.train.create_global_step()
#tf.train.get_global_step()
learning_rate=tf.train.exponential_decay(learning_rt, global_step,
5000, 0.9, staircase=True)
train = tf.train.MomentumOptimizer(learning_rate,momentum=0.9).minimize(loss_train,global_step=global_step)
# train = tf.train.AdamOptimizer(learning_rt).minimize(loss_train)
tf.summary.scalar('loss_train', loss_train)
tf.summary.scalar('acc_train', acc_train)
merged = tf.summary.merge_all()
with tf.Session(config=tf.ConfigProto()) as sess:
trainwrite = tf.summary.FileWriter(logpath, sess.graph)
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(sess=sess, coord=coord)
sess.run(tf.global_variables_initializer())
saver = tf.train.Saver()
run_cycle=0
if os.path.exists(savepath+'313.ckpt.index') :
print('nStart Restore')
saver.restore(sess, savepath+'33.ckpt')
print('nEnd Restore')
print('nStart Training')
try:
while not coord.should_stop():
while run_cycle < MAX_Cycle:
run_cycle+=1
# if run_cycle%10==0:
# learning_rt*=0.6
# if run_cycle%200==0:
# learning_rt*=2.
l_tall=0
a_tall=0
l_teall=0
a_teall=0
for train_c in range(TRAIN_CYCLE):
_,l_train,a_train=sess.run([train,loss_train,acc_train])
l_tall+=l_train
a_tall+=a_train
if (train_c+1)%100==0:
print('train_loss:%f'%(l_tall/100.))
print('train_acc:%f'%(a_tall/100.))
l_tall = 0
a_tall = 0
if (train_c+1)%500==0:
print('Global Step:',sess.run(global_step))
result_merged=sess.run(merged)
trainwrite.add_summary(result_merged, run_cycle*TRAIN_CYCLE+train_c)
for test_c in range(TEST_CYCLE):
l_test,a_test=sess.run([loss_test,acc_test])
l_teall+=l_test
a_teall+=a_test
if (test_c+1)%TEST_CYCLE==0:
print('------------------')
print('test_loss:%f'%(l_teall/TEST_CYCLE))
print('test_acc:%f'%(a_teall/TEST_CYCLE))
print('------------------')
l_teall = 0
l_teall = 0
saver.save(sess, savepath+ str(run_cycle) + '.ckpt')
except tf.errors.OutOfRangeError:
print('Done training!!!')
finally:
# When done, ask the threads to stop.
coord.request_stop()
coord.join(threads)
sess.close()
Freeze code
import os, argparse
import tensorflow as tf
from tensorflow.python.framework import graph_util
dir = os.path.dirname(os.path.realpath(__file__))
def freeze_graph(model_folder, output_nodes='y_hat',
output_filename='frozen-graph.pb',
rename_outputs=None):
# Load checkpoint
checkpoint = tf.train.get_checkpoint_state(model_folder)
input_checkpoint = checkpoint.model_checkpoint_path
output_graph = output_filename
# Devices should be cleared to allow Tensorflow to control placement of
# graph when loading on different machines
saver = tf.train.import_meta_graph(input_checkpoint + '.meta',
clear_devices=True)
graph = tf.get_default_graph()
onames = output_nodes.split(',')
# https://stackoverflow.com/a/34399966/4190475
if rename_outputs is not None:
nnames = rename_outputs.split(',')
with graph.as_default():
for o, n in zip(onames, nnames):
_out = tf.identity(graph.get_tensor_by_name(o + ':0'), name=n)
onames = nnames
input_graph_def = graph.as_graph_def()
# fix batch norm nodes
for node in input_graph_def.node:
if node.op == 'RefSwitch':
node.op = 'Switch'
for index in range(len(node.input)):
if 'moving_' in node.input[index]:
node.input[index] = node.input[index] + '/read'
elif node.op == 'AssignSub':
node.op = 'Sub'
if 'use_locking' in node.attr: del node.attr['use_locking']
with tf.Session(graph=graph) as sess:
saver.restore(sess, input_checkpoint)
# In production, graph weights no longer need to be updated
# graph_util provides utility to change all variables to constants
output_graph_def = graph_util.convert_variables_to_constants(
sess, input_graph_def,
onames # unrelated nodes will be discarded
)
# Serialize and write to file
with tf.gfile.GFile(output_graph, "wb") as f:
f.write(output_graph_def.SerializeToString())
print("%d ops in the final graph." % len(output_graph_def.node))
if __name__ == '__main__':
parser = argparse.ArgumentParser(
description='Prune and freeze weights from checkpoints into production models')
parser.add_argument("--checkpoint_path",
default='./regressionDir/',
type=str, help="Path to checkpoint files")
parser.add_argument("--output_nodes",
default='Model/dense2/bias_add',
type=str, help="Names of output node, comma seperated")
parser.add_argument("--output_graph",
default='reg.pb',
type=str, help="Output graph filename")
parser.add_argument("--rename_outputs",
default='out_vol',
type=str, help="Rename output nodes for better
readability in production graph, to be specified in
the same order as output_nodes")
args = parser.parse_args()
freeze_graph(args.checkpoint_path, args.output_nodes, args.output_graph, args.rename_outputs)
Test inference code
import tensorflow as tf
import numpy as np
from PIL import Image
import time
gf = tf.GraphDef()
gf.ParseFromString(open('reg.pb', 'rb').read())
print([n.name + '=>' + n.op for n in gf.node])
output_graph_path = './reg.pb'
with tf.Session() as sess:
tf.global_variables_initializer().run()
output_graph_def = tf.GraphDef()
with open(output_graph_path, "rb") as f:
output_graph_def.ParseFromString(f.read())
_ = tf.import_graph_def(output_graph_def, name="")
input_img = sess.graph.get_tensor_by_name("shuffle_batch:0")
print(input_img)
out_vol = sess.graph.get_tensor_by_name("out_vol:0")
out_voln = sess.graph.get_tensor_by_name("shuffle_batch:0")
a = np.random.random([48, 480, 224, 3])
for x in range(100):
ntime1 = time.time()
vol = sess.run(out_vol, {input_img: a})
ntime2 = time.time()
print(ntime2 - ntime1)
tensorflow
tensorflow
edited Nov 29 '18 at 6:54
Windaway
asked Nov 28 '18 at 11:59
WindawayWindaway
62
62
1
Please try to provide a minimal working example of your code, so we can see what you're actually doing. It may be worth taking a look at stackoverflow.com/help/how-to-ask
– Dan Rayson
Nov 28 '18 at 13:44
add a comment |
1
Please try to provide a minimal working example of your code, so we can see what you're actually doing. It may be worth taking a look at stackoverflow.com/help/how-to-ask
– Dan Rayson
Nov 28 '18 at 13:44
1
1
Please try to provide a minimal working example of your code, so we can see what you're actually doing. It may be worth taking a look at stackoverflow.com/help/how-to-ask
– Dan Rayson
Nov 28 '18 at 13:44
Please try to provide a minimal working example of your code, so we can see what you're actually doing. It may be worth taking a look at stackoverflow.com/help/how-to-ask
– Dan Rayson
Nov 28 '18 at 13:44
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53518977%2fhow-to-freeze-tensorflow-ckpt-with-queuerunner%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53518977%2fhow-to-freeze-tensorflow-ckpt-with-queuerunner%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
Please try to provide a minimal working example of your code, so we can see what you're actually doing. It may be worth taking a look at stackoverflow.com/help/how-to-ask
– Dan Rayson
Nov 28 '18 at 13:44