How would I group by unique values that are in a list form?












1















If I wanted to get the mean of the past 2 values based on column id, I would do the following:



df['rolling_mean_2'] = df.groupby('id').apply(lambda x: x.rolling(2, min_periods=2).mean())

>> id value rolling_mean_2
0 b 1 NaN
1 b 3 2
2 d 5 NaN
3 d 7 6


Right, straightforward.
Ok, now let's say my id are in a list form with 4 unique values (a, b, c, d)



 x = [{'id': ['a','b','d'], 'value':1},
{'id': ['b','a','d'], 'value':3},
{'id': ['b','a','d'], 'value':5},
{'id': ['a','b','c'], 'value':7}]

df = pd.DataFrame(x)


Now, how would I get the mean from the past 2 values (incl. current row) based on unique value that contains in the list? Thus, my expected output would be as follows:




I'm only going to use variable a and d to keep tidiness and simplicity.




>>          id          value      a_rolling_mean_2      d_rolling_mean_2   
0 [a, b, d] 1 NaN NaN
1 [b, a, d] 3 2 2
2 [b, a, d] 5 4 4
3 [a, b, c] 7 6 NaN









share|improve this question



























    1















    If I wanted to get the mean of the past 2 values based on column id, I would do the following:



    df['rolling_mean_2'] = df.groupby('id').apply(lambda x: x.rolling(2, min_periods=2).mean())

    >> id value rolling_mean_2
    0 b 1 NaN
    1 b 3 2
    2 d 5 NaN
    3 d 7 6


    Right, straightforward.
    Ok, now let's say my id are in a list form with 4 unique values (a, b, c, d)



     x = [{'id': ['a','b','d'], 'value':1},
    {'id': ['b','a','d'], 'value':3},
    {'id': ['b','a','d'], 'value':5},
    {'id': ['a','b','c'], 'value':7}]

    df = pd.DataFrame(x)


    Now, how would I get the mean from the past 2 values (incl. current row) based on unique value that contains in the list? Thus, my expected output would be as follows:




    I'm only going to use variable a and d to keep tidiness and simplicity.




    >>          id          value      a_rolling_mean_2      d_rolling_mean_2   
    0 [a, b, d] 1 NaN NaN
    1 [b, a, d] 3 2 2
    2 [b, a, d] 5 4 4
    3 [a, b, c] 7 6 NaN









    share|improve this question

























      1












      1








      1


      1






      If I wanted to get the mean of the past 2 values based on column id, I would do the following:



      df['rolling_mean_2'] = df.groupby('id').apply(lambda x: x.rolling(2, min_periods=2).mean())

      >> id value rolling_mean_2
      0 b 1 NaN
      1 b 3 2
      2 d 5 NaN
      3 d 7 6


      Right, straightforward.
      Ok, now let's say my id are in a list form with 4 unique values (a, b, c, d)



       x = [{'id': ['a','b','d'], 'value':1},
      {'id': ['b','a','d'], 'value':3},
      {'id': ['b','a','d'], 'value':5},
      {'id': ['a','b','c'], 'value':7}]

      df = pd.DataFrame(x)


      Now, how would I get the mean from the past 2 values (incl. current row) based on unique value that contains in the list? Thus, my expected output would be as follows:




      I'm only going to use variable a and d to keep tidiness and simplicity.




      >>          id          value      a_rolling_mean_2      d_rolling_mean_2   
      0 [a, b, d] 1 NaN NaN
      1 [b, a, d] 3 2 2
      2 [b, a, d] 5 4 4
      3 [a, b, c] 7 6 NaN









      share|improve this question














      If I wanted to get the mean of the past 2 values based on column id, I would do the following:



      df['rolling_mean_2'] = df.groupby('id').apply(lambda x: x.rolling(2, min_periods=2).mean())

      >> id value rolling_mean_2
      0 b 1 NaN
      1 b 3 2
      2 d 5 NaN
      3 d 7 6


      Right, straightforward.
      Ok, now let's say my id are in a list form with 4 unique values (a, b, c, d)



       x = [{'id': ['a','b','d'], 'value':1},
      {'id': ['b','a','d'], 'value':3},
      {'id': ['b','a','d'], 'value':5},
      {'id': ['a','b','c'], 'value':7}]

      df = pd.DataFrame(x)


      Now, how would I get the mean from the past 2 values (incl. current row) based on unique value that contains in the list? Thus, my expected output would be as follows:




      I'm only going to use variable a and d to keep tidiness and simplicity.




      >>          id          value      a_rolling_mean_2      d_rolling_mean_2   
      0 [a, b, d] 1 NaN NaN
      1 [b, a, d] 3 2 2
      2 [b, a, d] 5 4 4
      3 [a, b, c] 7 6 NaN






      python python-3.x pandas lambda pandas-groupby






      share|improve this question













      share|improve this question











      share|improve this question




      share|improve this question










      asked Nov 27 '18 at 2:00









      ChipmunkafyChipmunkafy

      13511




      13511
























          1 Answer
          1






          active

          oldest

          votes


















          4














          Using concat with dataframe constructor recreate the dataframe



          df=df.rename(columns={'value':'V'})
          newdf=pd.concat([df.V,pd.DataFrame(df.id.tolist(),index=df.index)],axis=1)


          Then , Using melt with groupby rolling mean and stack to get the out put



          newdf.reset_index().melt(['index','V']).set_index('index').sort_index().groupby('value').V.rolling(2, min_periods=2).mean().unstack(0)
          Out[260]:
          value a b c d
          index
          0 NaN NaN NaN NaN
          1 2.0 2.0 NaN 2.0
          2 4.0 4.0 NaN 4.0
          3 6.0 6.0 NaN NaN





          share|improve this answer
























          • Perfect! Thank you so much

            – Chipmunkafy
            Nov 27 '18 at 2:49











          Your Answer






          StackExchange.ifUsing("editor", function () {
          StackExchange.using("externalEditor", function () {
          StackExchange.using("snippets", function () {
          StackExchange.snippets.init();
          });
          });
          }, "code-snippets");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "1"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53491708%2fhow-would-i-group-by-unique-values-that-are-in-a-list-form%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          4














          Using concat with dataframe constructor recreate the dataframe



          df=df.rename(columns={'value':'V'})
          newdf=pd.concat([df.V,pd.DataFrame(df.id.tolist(),index=df.index)],axis=1)


          Then , Using melt with groupby rolling mean and stack to get the out put



          newdf.reset_index().melt(['index','V']).set_index('index').sort_index().groupby('value').V.rolling(2, min_periods=2).mean().unstack(0)
          Out[260]:
          value a b c d
          index
          0 NaN NaN NaN NaN
          1 2.0 2.0 NaN 2.0
          2 4.0 4.0 NaN 4.0
          3 6.0 6.0 NaN NaN





          share|improve this answer
























          • Perfect! Thank you so much

            – Chipmunkafy
            Nov 27 '18 at 2:49
















          4














          Using concat with dataframe constructor recreate the dataframe



          df=df.rename(columns={'value':'V'})
          newdf=pd.concat([df.V,pd.DataFrame(df.id.tolist(),index=df.index)],axis=1)


          Then , Using melt with groupby rolling mean and stack to get the out put



          newdf.reset_index().melt(['index','V']).set_index('index').sort_index().groupby('value').V.rolling(2, min_periods=2).mean().unstack(0)
          Out[260]:
          value a b c d
          index
          0 NaN NaN NaN NaN
          1 2.0 2.0 NaN 2.0
          2 4.0 4.0 NaN 4.0
          3 6.0 6.0 NaN NaN





          share|improve this answer
























          • Perfect! Thank you so much

            – Chipmunkafy
            Nov 27 '18 at 2:49














          4












          4








          4







          Using concat with dataframe constructor recreate the dataframe



          df=df.rename(columns={'value':'V'})
          newdf=pd.concat([df.V,pd.DataFrame(df.id.tolist(),index=df.index)],axis=1)


          Then , Using melt with groupby rolling mean and stack to get the out put



          newdf.reset_index().melt(['index','V']).set_index('index').sort_index().groupby('value').V.rolling(2, min_periods=2).mean().unstack(0)
          Out[260]:
          value a b c d
          index
          0 NaN NaN NaN NaN
          1 2.0 2.0 NaN 2.0
          2 4.0 4.0 NaN 4.0
          3 6.0 6.0 NaN NaN





          share|improve this answer













          Using concat with dataframe constructor recreate the dataframe



          df=df.rename(columns={'value':'V'})
          newdf=pd.concat([df.V,pd.DataFrame(df.id.tolist(),index=df.index)],axis=1)


          Then , Using melt with groupby rolling mean and stack to get the out put



          newdf.reset_index().melt(['index','V']).set_index('index').sort_index().groupby('value').V.rolling(2, min_periods=2).mean().unstack(0)
          Out[260]:
          value a b c d
          index
          0 NaN NaN NaN NaN
          1 2.0 2.0 NaN 2.0
          2 4.0 4.0 NaN 4.0
          3 6.0 6.0 NaN NaN






          share|improve this answer












          share|improve this answer



          share|improve this answer










          answered Nov 27 '18 at 2:15









          Wen-BenWen-Ben

          112k83267




          112k83267













          • Perfect! Thank you so much

            – Chipmunkafy
            Nov 27 '18 at 2:49



















          • Perfect! Thank you so much

            – Chipmunkafy
            Nov 27 '18 at 2:49

















          Perfect! Thank you so much

          – Chipmunkafy
          Nov 27 '18 at 2:49





          Perfect! Thank you so much

          – Chipmunkafy
          Nov 27 '18 at 2:49




















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Stack Overflow!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53491708%2fhow-would-i-group-by-unique-values-that-are-in-a-list-form%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          A CLEAN and SIMPLE way to add appendices to Table of Contents and bookmarks

          Calculate evaluation metrics using cross_val_predict sklearn

          Insert data from modal to MySQL (multiple modal on website)