ROC Curve using plotROC package and geom_roc(), transforming data to “M1 markers”
up vote
2
down vote
favorite
I am attempting to plot a ROC curve using the plotROC
package for ggplot2
, but I am not sure how to transform the data I have into the M1
marker format. The documentation provided the following example:
# plotROC documentation example
library(plotROC)
library(ggplot2)
D.ex <- rbinom(200, size = 1, prob = .5)
M1 <- rnorm(200, mean = D.ex, sd = .65)
M2 <- rnorm(200, mean = D.ex, sd = 1.5)
D M1 M2
1 1.4995932 0.5508204
1 0.4181619 1.6339181
0 -0.3620614 -1.0428972
1 0.7991132 -1.6396751
0 0.9574047 2.1159753
1 1.3440595 1.3026485
test <- data.frame(D = D.ex, D.str = c("Healthy", "Ill")[D.ex + 1],
M1 = M1, M2 = M2, stringsAsFactors = FALSE)
ggplot(test, aes(d = D, m = M1)) +
geom_roc()
Sample ROC plot output by plotROC
My data is logistic regression scores on a test subset:
# Example starting point
test <- rbinom(200, size = 1, prob = 0.2)
scores.prob <- runif(200, min = 0 , max = 1)
scores.class <- ifelse(scores.prob > 0.5, 1, 0)
# Example generated data
test scores.prob scores.class
0 0.7323306 1
0 0.7860687 1
0 0.9535123 1
1 0.3082551 0
0 0.5762784 1
1 0.4613730 0
I would like to know what M1
is and how to transform my data to get that field.
r ggplot2 roc
add a comment |
up vote
2
down vote
favorite
I am attempting to plot a ROC curve using the plotROC
package for ggplot2
, but I am not sure how to transform the data I have into the M1
marker format. The documentation provided the following example:
# plotROC documentation example
library(plotROC)
library(ggplot2)
D.ex <- rbinom(200, size = 1, prob = .5)
M1 <- rnorm(200, mean = D.ex, sd = .65)
M2 <- rnorm(200, mean = D.ex, sd = 1.5)
D M1 M2
1 1.4995932 0.5508204
1 0.4181619 1.6339181
0 -0.3620614 -1.0428972
1 0.7991132 -1.6396751
0 0.9574047 2.1159753
1 1.3440595 1.3026485
test <- data.frame(D = D.ex, D.str = c("Healthy", "Ill")[D.ex + 1],
M1 = M1, M2 = M2, stringsAsFactors = FALSE)
ggplot(test, aes(d = D, m = M1)) +
geom_roc()
Sample ROC plot output by plotROC
My data is logistic regression scores on a test subset:
# Example starting point
test <- rbinom(200, size = 1, prob = 0.2)
scores.prob <- runif(200, min = 0 , max = 1)
scores.class <- ifelse(scores.prob > 0.5, 1, 0)
# Example generated data
test scores.prob scores.class
0 0.7323306 1
0 0.7860687 1
0 0.9535123 1
1 0.3082551 0
0 0.5762784 1
1 0.4613730 0
I would like to know what M1
is and how to transform my data to get that field.
r ggplot2 roc
I don't really understand it, but this paper: ncbi.nlm.nih.gov/pmc/articles/PMC3952000 has a whole bunch about ROC curves, M1 and M2. Could that help?
– RAB
Nov 22 at 7:24
also check out the?StatRoc
page as it goes into a bit more detail about the d and m parameters
– RAB
Nov 22 at 7:32
1
@user10626943?StatRoc
was a great resource! Thank you for the fast response.
– Nick
Nov 22 at 17:18
add a comment |
up vote
2
down vote
favorite
up vote
2
down vote
favorite
I am attempting to plot a ROC curve using the plotROC
package for ggplot2
, but I am not sure how to transform the data I have into the M1
marker format. The documentation provided the following example:
# plotROC documentation example
library(plotROC)
library(ggplot2)
D.ex <- rbinom(200, size = 1, prob = .5)
M1 <- rnorm(200, mean = D.ex, sd = .65)
M2 <- rnorm(200, mean = D.ex, sd = 1.5)
D M1 M2
1 1.4995932 0.5508204
1 0.4181619 1.6339181
0 -0.3620614 -1.0428972
1 0.7991132 -1.6396751
0 0.9574047 2.1159753
1 1.3440595 1.3026485
test <- data.frame(D = D.ex, D.str = c("Healthy", "Ill")[D.ex + 1],
M1 = M1, M2 = M2, stringsAsFactors = FALSE)
ggplot(test, aes(d = D, m = M1)) +
geom_roc()
Sample ROC plot output by plotROC
My data is logistic regression scores on a test subset:
# Example starting point
test <- rbinom(200, size = 1, prob = 0.2)
scores.prob <- runif(200, min = 0 , max = 1)
scores.class <- ifelse(scores.prob > 0.5, 1, 0)
# Example generated data
test scores.prob scores.class
0 0.7323306 1
0 0.7860687 1
0 0.9535123 1
1 0.3082551 0
0 0.5762784 1
1 0.4613730 0
I would like to know what M1
is and how to transform my data to get that field.
r ggplot2 roc
I am attempting to plot a ROC curve using the plotROC
package for ggplot2
, but I am not sure how to transform the data I have into the M1
marker format. The documentation provided the following example:
# plotROC documentation example
library(plotROC)
library(ggplot2)
D.ex <- rbinom(200, size = 1, prob = .5)
M1 <- rnorm(200, mean = D.ex, sd = .65)
M2 <- rnorm(200, mean = D.ex, sd = 1.5)
D M1 M2
1 1.4995932 0.5508204
1 0.4181619 1.6339181
0 -0.3620614 -1.0428972
1 0.7991132 -1.6396751
0 0.9574047 2.1159753
1 1.3440595 1.3026485
test <- data.frame(D = D.ex, D.str = c("Healthy", "Ill")[D.ex + 1],
M1 = M1, M2 = M2, stringsAsFactors = FALSE)
ggplot(test, aes(d = D, m = M1)) +
geom_roc()
Sample ROC plot output by plotROC
My data is logistic regression scores on a test subset:
# Example starting point
test <- rbinom(200, size = 1, prob = 0.2)
scores.prob <- runif(200, min = 0 , max = 1)
scores.class <- ifelse(scores.prob > 0.5, 1, 0)
# Example generated data
test scores.prob scores.class
0 0.7323306 1
0 0.7860687 1
0 0.9535123 1
1 0.3082551 0
0 0.5762784 1
1 0.4613730 0
I would like to know what M1
is and how to transform my data to get that field.
r ggplot2 roc
r ggplot2 roc
edited Nov 22 at 16:52
asked Nov 22 at 3:56
Nick
134
134
I don't really understand it, but this paper: ncbi.nlm.nih.gov/pmc/articles/PMC3952000 has a whole bunch about ROC curves, M1 and M2. Could that help?
– RAB
Nov 22 at 7:24
also check out the?StatRoc
page as it goes into a bit more detail about the d and m parameters
– RAB
Nov 22 at 7:32
1
@user10626943?StatRoc
was a great resource! Thank you for the fast response.
– Nick
Nov 22 at 17:18
add a comment |
I don't really understand it, but this paper: ncbi.nlm.nih.gov/pmc/articles/PMC3952000 has a whole bunch about ROC curves, M1 and M2. Could that help?
– RAB
Nov 22 at 7:24
also check out the?StatRoc
page as it goes into a bit more detail about the d and m parameters
– RAB
Nov 22 at 7:32
1
@user10626943?StatRoc
was a great resource! Thank you for the fast response.
– Nick
Nov 22 at 17:18
I don't really understand it, but this paper: ncbi.nlm.nih.gov/pmc/articles/PMC3952000 has a whole bunch about ROC curves, M1 and M2. Could that help?
– RAB
Nov 22 at 7:24
I don't really understand it, but this paper: ncbi.nlm.nih.gov/pmc/articles/PMC3952000 has a whole bunch about ROC curves, M1 and M2. Could that help?
– RAB
Nov 22 at 7:24
also check out the
?StatRoc
page as it goes into a bit more detail about the d and m parameters– RAB
Nov 22 at 7:32
also check out the
?StatRoc
page as it goes into a bit more detail about the d and m parameters– RAB
Nov 22 at 7:32
1
1
@user10626943
?StatRoc
was a great resource! Thank you for the fast response.– Nick
Nov 22 at 17:18
@user10626943
?StatRoc
was a great resource! Thank you for the fast response.– Nick
Nov 22 at 17:18
add a comment |
1 Answer
1
active
oldest
votes
up vote
1
down vote
accepted
library(plotROC)
library(ggplot2)
test <- rbinom(200, size = 1, prob = 0.2)
scores.prob <- runif(200, min = 0 , max = 1)
test <- data.frame(D = test,
M1 = scores.prob, stringsAsFactors = FALSE)
ggplot(test, aes(d = D, m = M1)) +
geom_roc()
Your marker/predictor is the fitted values of your glm model. The ROC will give you the idea of how your model work (by means of AUC) and the best probability threshold (the ROC cutoff) for assigning persons to classes.
It is a usefull approach if you want to visualize the added value of fdifferent multivariate/univariate approaches.
Here a full example with the mtcars dataset. Hope it helps.
# Loading data
data(mtcars)
# Manual transmission (am = 1) depends on 1/4 mile time (qsec) and miles/(US) gallon (mpg)
glmfit <- glm(am ~ qsec + mpg, data = mtcars, binomial)
mtcars$fitted_am <- glmfit$fitted.values
# Loading packages
library(plotROC)
library(ggplot2)
library(pROC)
# Calculating ROC curve, AUC and threshold according to Youden index
rocfit <- roc(mtcars$am, mtcars$fitted_am)
auc(rocfit)
coords(rocfit, x = "b")
basicplot <- ggplot(mtcars, aes(d = am, m = fitted_am))
basicplot +
geom_roc() +
style_roc(theme = theme_grey) +
theme(axis.text = element_text(colour = "blue")) +
ggtitle("Automatic transmission prediction") +
scale_x_continuous("1 - Specificity", breaks = seq(0, 1, by = .1))
plot(rocfit)
prop.table(table(mtcars$am))
1
The mtcars example helped a great deal and thank you for the quick response!
– Nick
Nov 22 at 17:21
add a comment |
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
1
down vote
accepted
library(plotROC)
library(ggplot2)
test <- rbinom(200, size = 1, prob = 0.2)
scores.prob <- runif(200, min = 0 , max = 1)
test <- data.frame(D = test,
M1 = scores.prob, stringsAsFactors = FALSE)
ggplot(test, aes(d = D, m = M1)) +
geom_roc()
Your marker/predictor is the fitted values of your glm model. The ROC will give you the idea of how your model work (by means of AUC) and the best probability threshold (the ROC cutoff) for assigning persons to classes.
It is a usefull approach if you want to visualize the added value of fdifferent multivariate/univariate approaches.
Here a full example with the mtcars dataset. Hope it helps.
# Loading data
data(mtcars)
# Manual transmission (am = 1) depends on 1/4 mile time (qsec) and miles/(US) gallon (mpg)
glmfit <- glm(am ~ qsec + mpg, data = mtcars, binomial)
mtcars$fitted_am <- glmfit$fitted.values
# Loading packages
library(plotROC)
library(ggplot2)
library(pROC)
# Calculating ROC curve, AUC and threshold according to Youden index
rocfit <- roc(mtcars$am, mtcars$fitted_am)
auc(rocfit)
coords(rocfit, x = "b")
basicplot <- ggplot(mtcars, aes(d = am, m = fitted_am))
basicplot +
geom_roc() +
style_roc(theme = theme_grey) +
theme(axis.text = element_text(colour = "blue")) +
ggtitle("Automatic transmission prediction") +
scale_x_continuous("1 - Specificity", breaks = seq(0, 1, by = .1))
plot(rocfit)
prop.table(table(mtcars$am))
1
The mtcars example helped a great deal and thank you for the quick response!
– Nick
Nov 22 at 17:21
add a comment |
up vote
1
down vote
accepted
library(plotROC)
library(ggplot2)
test <- rbinom(200, size = 1, prob = 0.2)
scores.prob <- runif(200, min = 0 , max = 1)
test <- data.frame(D = test,
M1 = scores.prob, stringsAsFactors = FALSE)
ggplot(test, aes(d = D, m = M1)) +
geom_roc()
Your marker/predictor is the fitted values of your glm model. The ROC will give you the idea of how your model work (by means of AUC) and the best probability threshold (the ROC cutoff) for assigning persons to classes.
It is a usefull approach if you want to visualize the added value of fdifferent multivariate/univariate approaches.
Here a full example with the mtcars dataset. Hope it helps.
# Loading data
data(mtcars)
# Manual transmission (am = 1) depends on 1/4 mile time (qsec) and miles/(US) gallon (mpg)
glmfit <- glm(am ~ qsec + mpg, data = mtcars, binomial)
mtcars$fitted_am <- glmfit$fitted.values
# Loading packages
library(plotROC)
library(ggplot2)
library(pROC)
# Calculating ROC curve, AUC and threshold according to Youden index
rocfit <- roc(mtcars$am, mtcars$fitted_am)
auc(rocfit)
coords(rocfit, x = "b")
basicplot <- ggplot(mtcars, aes(d = am, m = fitted_am))
basicplot +
geom_roc() +
style_roc(theme = theme_grey) +
theme(axis.text = element_text(colour = "blue")) +
ggtitle("Automatic transmission prediction") +
scale_x_continuous("1 - Specificity", breaks = seq(0, 1, by = .1))
plot(rocfit)
prop.table(table(mtcars$am))
1
The mtcars example helped a great deal and thank you for the quick response!
– Nick
Nov 22 at 17:21
add a comment |
up vote
1
down vote
accepted
up vote
1
down vote
accepted
library(plotROC)
library(ggplot2)
test <- rbinom(200, size = 1, prob = 0.2)
scores.prob <- runif(200, min = 0 , max = 1)
test <- data.frame(D = test,
M1 = scores.prob, stringsAsFactors = FALSE)
ggplot(test, aes(d = D, m = M1)) +
geom_roc()
Your marker/predictor is the fitted values of your glm model. The ROC will give you the idea of how your model work (by means of AUC) and the best probability threshold (the ROC cutoff) for assigning persons to classes.
It is a usefull approach if you want to visualize the added value of fdifferent multivariate/univariate approaches.
Here a full example with the mtcars dataset. Hope it helps.
# Loading data
data(mtcars)
# Manual transmission (am = 1) depends on 1/4 mile time (qsec) and miles/(US) gallon (mpg)
glmfit <- glm(am ~ qsec + mpg, data = mtcars, binomial)
mtcars$fitted_am <- glmfit$fitted.values
# Loading packages
library(plotROC)
library(ggplot2)
library(pROC)
# Calculating ROC curve, AUC and threshold according to Youden index
rocfit <- roc(mtcars$am, mtcars$fitted_am)
auc(rocfit)
coords(rocfit, x = "b")
basicplot <- ggplot(mtcars, aes(d = am, m = fitted_am))
basicplot +
geom_roc() +
style_roc(theme = theme_grey) +
theme(axis.text = element_text(colour = "blue")) +
ggtitle("Automatic transmission prediction") +
scale_x_continuous("1 - Specificity", breaks = seq(0, 1, by = .1))
plot(rocfit)
prop.table(table(mtcars$am))
library(plotROC)
library(ggplot2)
test <- rbinom(200, size = 1, prob = 0.2)
scores.prob <- runif(200, min = 0 , max = 1)
test <- data.frame(D = test,
M1 = scores.prob, stringsAsFactors = FALSE)
ggplot(test, aes(d = D, m = M1)) +
geom_roc()
Your marker/predictor is the fitted values of your glm model. The ROC will give you the idea of how your model work (by means of AUC) and the best probability threshold (the ROC cutoff) for assigning persons to classes.
It is a usefull approach if you want to visualize the added value of fdifferent multivariate/univariate approaches.
Here a full example with the mtcars dataset. Hope it helps.
# Loading data
data(mtcars)
# Manual transmission (am = 1) depends on 1/4 mile time (qsec) and miles/(US) gallon (mpg)
glmfit <- glm(am ~ qsec + mpg, data = mtcars, binomial)
mtcars$fitted_am <- glmfit$fitted.values
# Loading packages
library(plotROC)
library(ggplot2)
library(pROC)
# Calculating ROC curve, AUC and threshold according to Youden index
rocfit <- roc(mtcars$am, mtcars$fitted_am)
auc(rocfit)
coords(rocfit, x = "b")
basicplot <- ggplot(mtcars, aes(d = am, m = fitted_am))
basicplot +
geom_roc() +
style_roc(theme = theme_grey) +
theme(axis.text = element_text(colour = "blue")) +
ggtitle("Automatic transmission prediction") +
scale_x_continuous("1 - Specificity", breaks = seq(0, 1, by = .1))
plot(rocfit)
prop.table(table(mtcars$am))
edited Nov 22 at 8:53
answered Nov 22 at 8:18
paoloeusebi
622413
622413
1
The mtcars example helped a great deal and thank you for the quick response!
– Nick
Nov 22 at 17:21
add a comment |
1
The mtcars example helped a great deal and thank you for the quick response!
– Nick
Nov 22 at 17:21
1
1
The mtcars example helped a great deal and thank you for the quick response!
– Nick
Nov 22 at 17:21
The mtcars example helped a great deal and thank you for the quick response!
– Nick
Nov 22 at 17:21
add a comment |
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53423655%2froc-curve-using-plotroc-package-and-geom-roc-transforming-data-to-m1-markers%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
I don't really understand it, but this paper: ncbi.nlm.nih.gov/pmc/articles/PMC3952000 has a whole bunch about ROC curves, M1 and M2. Could that help?
– RAB
Nov 22 at 7:24
also check out the
?StatRoc
page as it goes into a bit more detail about the d and m parameters– RAB
Nov 22 at 7:32
1
@user10626943
?StatRoc
was a great resource! Thank you for the fast response.– Nick
Nov 22 at 17:18