Extremely high CPU usage when training a model on GPU
up vote
1
down vote
favorite
Recently I discovered something rather strange with the project that I worked on for quite a while already. The model I have is rather conventional: a convnet with a few fully connected layers. For data loading I use tf.data API, but the same thing happens with queue-based code that I had before porting to tf.data. After a few hours since the training of the model begins, the CPU usage rises to very high levels, 1500-2000% as reported by the htop
util. And at the beginning of training everything is fine, the main process shows only about 200% CPU usage. Attached is the screenshot of the htop
output, and another thing that's worrying is all the child processes that also have pretty high CPU load.
I am using tensorflow-gpu version 1.11, running it on NVIDIA Tesla V100. I am pretty sure that the model does run on the GPU and not on the CPU: nvidia-smi shows that GPU is occupied at an about 70% rate.
Obviously, I cannot ask for an exact cause of this, and it would be difficult to strip the problem down to a reproducible test case. However, may be you could point me at some debugging techniques that are applicable in such case.
python tensorflow
add a comment |
up vote
1
down vote
favorite
Recently I discovered something rather strange with the project that I worked on for quite a while already. The model I have is rather conventional: a convnet with a few fully connected layers. For data loading I use tf.data API, but the same thing happens with queue-based code that I had before porting to tf.data. After a few hours since the training of the model begins, the CPU usage rises to very high levels, 1500-2000% as reported by the htop
util. And at the beginning of training everything is fine, the main process shows only about 200% CPU usage. Attached is the screenshot of the htop
output, and another thing that's worrying is all the child processes that also have pretty high CPU load.
I am using tensorflow-gpu version 1.11, running it on NVIDIA Tesla V100. I am pretty sure that the model does run on the GPU and not on the CPU: nvidia-smi shows that GPU is occupied at an about 70% rate.
Obviously, I cannot ask for an exact cause of this, and it would be difficult to strip the problem down to a reproducible test case. However, may be you could point me at some debugging techniques that are applicable in such case.
python tensorflow
add a comment |
up vote
1
down vote
favorite
up vote
1
down vote
favorite
Recently I discovered something rather strange with the project that I worked on for quite a while already. The model I have is rather conventional: a convnet with a few fully connected layers. For data loading I use tf.data API, but the same thing happens with queue-based code that I had before porting to tf.data. After a few hours since the training of the model begins, the CPU usage rises to very high levels, 1500-2000% as reported by the htop
util. And at the beginning of training everything is fine, the main process shows only about 200% CPU usage. Attached is the screenshot of the htop
output, and another thing that's worrying is all the child processes that also have pretty high CPU load.
I am using tensorflow-gpu version 1.11, running it on NVIDIA Tesla V100. I am pretty sure that the model does run on the GPU and not on the CPU: nvidia-smi shows that GPU is occupied at an about 70% rate.
Obviously, I cannot ask for an exact cause of this, and it would be difficult to strip the problem down to a reproducible test case. However, may be you could point me at some debugging techniques that are applicable in such case.
python tensorflow
Recently I discovered something rather strange with the project that I worked on for quite a while already. The model I have is rather conventional: a convnet with a few fully connected layers. For data loading I use tf.data API, but the same thing happens with queue-based code that I had before porting to tf.data. After a few hours since the training of the model begins, the CPU usage rises to very high levels, 1500-2000% as reported by the htop
util. And at the beginning of training everything is fine, the main process shows only about 200% CPU usage. Attached is the screenshot of the htop
output, and another thing that's worrying is all the child processes that also have pretty high CPU load.
I am using tensorflow-gpu version 1.11, running it on NVIDIA Tesla V100. I am pretty sure that the model does run on the GPU and not on the CPU: nvidia-smi shows that GPU is occupied at an about 70% rate.
Obviously, I cannot ask for an exact cause of this, and it would be difficult to strip the problem down to a reproducible test case. However, may be you could point me at some debugging techniques that are applicable in such case.
python tensorflow
python tensorflow
asked Nov 21 at 11:26
SimpleMan
142315
142315
add a comment |
add a comment |
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53411097%2fextremely-high-cpu-usage-when-training-a-model-on-gpu%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown