Row-wise Element Indexing in PyTorch for C++
I am using the C++ frontend for PyTorch and am struggling with a relatively basic indexing problem.
I have an 8
by 6
Tensor such as the one below:
[ Variable[CUDAFloatType]{8,6} ]
0 1 2 3 4 5
0 1.7107e-14 4.0448e-17 4.9708e-06 1.1664e-08 9.9999e-01 2.1857e-20
1 1.8288e-14 5.9356e-17 5.3042e-06 1.2369e-08 9.9999e-01 2.4799e-20
2 2.6828e-04 9.0390e-18 1.7517e-02 1.0529e-03 9.8116e-01 6.7854e-26
3 5.7521e-10 3.1037e-11 1.5021e-03 1.2304e-06 9.9850e-01 1.4888e-17
4 1.7811e-13 1.8383e-15 1.6733e-05 3.8466e-08 9.9998e-01 5.2815e-20
5 9.6191e-06 2.6217e-23 3.1345e-02 2.3024e-04 9.6842e-01 2.9435e-34
6 2.2653e-04 8.4642e-18 1.6085e-02 9.7405e-04 9.8271e-01 6.3059e-26
7 3.8951e-14 2.9903e-16 8.3518e-06 1.7974e-08 9.9999e-01 3.6993e-20
I have another Tensor with just 8
elements in it such as:
[ Variable[CUDALongType]{8} ]
0
3
4
4
4
4
4
4
I would like to index the rows of my first tensor using the second to produce:
0
0 1.7107e-14
1 1.2369e-08
2 9.8116e-01
3 9.9850e-01
4 9.9998e-01
5 9.6842e-01
6 9.8271e-01
7 9.9999e-01
I have tried a few different approaches including index_select
but it seems to produce an output that has the same dimensions as the input (8x6
).
In Python I think I could index with Python's built-in indexing as discussed here: https://github.com/pytorch/pytorch/issues/1080
Unfortunately, in C++ I can only index a Tensor with a scalar (zero-dimensional Tensor) so I don't think that approach works for me here.
How can I achieve my desired result without resorting to loops?
c++ pytorch
add a comment |
I am using the C++ frontend for PyTorch and am struggling with a relatively basic indexing problem.
I have an 8
by 6
Tensor such as the one below:
[ Variable[CUDAFloatType]{8,6} ]
0 1 2 3 4 5
0 1.7107e-14 4.0448e-17 4.9708e-06 1.1664e-08 9.9999e-01 2.1857e-20
1 1.8288e-14 5.9356e-17 5.3042e-06 1.2369e-08 9.9999e-01 2.4799e-20
2 2.6828e-04 9.0390e-18 1.7517e-02 1.0529e-03 9.8116e-01 6.7854e-26
3 5.7521e-10 3.1037e-11 1.5021e-03 1.2304e-06 9.9850e-01 1.4888e-17
4 1.7811e-13 1.8383e-15 1.6733e-05 3.8466e-08 9.9998e-01 5.2815e-20
5 9.6191e-06 2.6217e-23 3.1345e-02 2.3024e-04 9.6842e-01 2.9435e-34
6 2.2653e-04 8.4642e-18 1.6085e-02 9.7405e-04 9.8271e-01 6.3059e-26
7 3.8951e-14 2.9903e-16 8.3518e-06 1.7974e-08 9.9999e-01 3.6993e-20
I have another Tensor with just 8
elements in it such as:
[ Variable[CUDALongType]{8} ]
0
3
4
4
4
4
4
4
I would like to index the rows of my first tensor using the second to produce:
0
0 1.7107e-14
1 1.2369e-08
2 9.8116e-01
3 9.9850e-01
4 9.9998e-01
5 9.6842e-01
6 9.8271e-01
7 9.9999e-01
I have tried a few different approaches including index_select
but it seems to produce an output that has the same dimensions as the input (8x6
).
In Python I think I could index with Python's built-in indexing as discussed here: https://github.com/pytorch/pytorch/issues/1080
Unfortunately, in C++ I can only index a Tensor with a scalar (zero-dimensional Tensor) so I don't think that approach works for me here.
How can I achieve my desired result without resorting to loops?
c++ pytorch
2
you want to look at pytorch.org/docs/stable/torch.html#torch.gather instead of index_select
– Shai
Nov 27 '18 at 22:02
add a comment |
I am using the C++ frontend for PyTorch and am struggling with a relatively basic indexing problem.
I have an 8
by 6
Tensor such as the one below:
[ Variable[CUDAFloatType]{8,6} ]
0 1 2 3 4 5
0 1.7107e-14 4.0448e-17 4.9708e-06 1.1664e-08 9.9999e-01 2.1857e-20
1 1.8288e-14 5.9356e-17 5.3042e-06 1.2369e-08 9.9999e-01 2.4799e-20
2 2.6828e-04 9.0390e-18 1.7517e-02 1.0529e-03 9.8116e-01 6.7854e-26
3 5.7521e-10 3.1037e-11 1.5021e-03 1.2304e-06 9.9850e-01 1.4888e-17
4 1.7811e-13 1.8383e-15 1.6733e-05 3.8466e-08 9.9998e-01 5.2815e-20
5 9.6191e-06 2.6217e-23 3.1345e-02 2.3024e-04 9.6842e-01 2.9435e-34
6 2.2653e-04 8.4642e-18 1.6085e-02 9.7405e-04 9.8271e-01 6.3059e-26
7 3.8951e-14 2.9903e-16 8.3518e-06 1.7974e-08 9.9999e-01 3.6993e-20
I have another Tensor with just 8
elements in it such as:
[ Variable[CUDALongType]{8} ]
0
3
4
4
4
4
4
4
I would like to index the rows of my first tensor using the second to produce:
0
0 1.7107e-14
1 1.2369e-08
2 9.8116e-01
3 9.9850e-01
4 9.9998e-01
5 9.6842e-01
6 9.8271e-01
7 9.9999e-01
I have tried a few different approaches including index_select
but it seems to produce an output that has the same dimensions as the input (8x6
).
In Python I think I could index with Python's built-in indexing as discussed here: https://github.com/pytorch/pytorch/issues/1080
Unfortunately, in C++ I can only index a Tensor with a scalar (zero-dimensional Tensor) so I don't think that approach works for me here.
How can I achieve my desired result without resorting to loops?
c++ pytorch
I am using the C++ frontend for PyTorch and am struggling with a relatively basic indexing problem.
I have an 8
by 6
Tensor such as the one below:
[ Variable[CUDAFloatType]{8,6} ]
0 1 2 3 4 5
0 1.7107e-14 4.0448e-17 4.9708e-06 1.1664e-08 9.9999e-01 2.1857e-20
1 1.8288e-14 5.9356e-17 5.3042e-06 1.2369e-08 9.9999e-01 2.4799e-20
2 2.6828e-04 9.0390e-18 1.7517e-02 1.0529e-03 9.8116e-01 6.7854e-26
3 5.7521e-10 3.1037e-11 1.5021e-03 1.2304e-06 9.9850e-01 1.4888e-17
4 1.7811e-13 1.8383e-15 1.6733e-05 3.8466e-08 9.9998e-01 5.2815e-20
5 9.6191e-06 2.6217e-23 3.1345e-02 2.3024e-04 9.6842e-01 2.9435e-34
6 2.2653e-04 8.4642e-18 1.6085e-02 9.7405e-04 9.8271e-01 6.3059e-26
7 3.8951e-14 2.9903e-16 8.3518e-06 1.7974e-08 9.9999e-01 3.6993e-20
I have another Tensor with just 8
elements in it such as:
[ Variable[CUDALongType]{8} ]
0
3
4
4
4
4
4
4
I would like to index the rows of my first tensor using the second to produce:
0
0 1.7107e-14
1 1.2369e-08
2 9.8116e-01
3 9.9850e-01
4 9.9998e-01
5 9.6842e-01
6 9.8271e-01
7 9.9999e-01
I have tried a few different approaches including index_select
but it seems to produce an output that has the same dimensions as the input (8x6
).
In Python I think I could index with Python's built-in indexing as discussed here: https://github.com/pytorch/pytorch/issues/1080
Unfortunately, in C++ I can only index a Tensor with a scalar (zero-dimensional Tensor) so I don't think that approach works for me here.
How can I achieve my desired result without resorting to loops?
c++ pytorch
c++ pytorch
edited Nov 27 '18 at 19:53
JoshVarty
asked Nov 27 '18 at 19:45
JoshVartyJoshVarty
5,59633357
5,59633357
2
you want to look at pytorch.org/docs/stable/torch.html#torch.gather instead of index_select
– Shai
Nov 27 '18 at 22:02
add a comment |
2
you want to look at pytorch.org/docs/stable/torch.html#torch.gather instead of index_select
– Shai
Nov 27 '18 at 22:02
2
2
you want to look at pytorch.org/docs/stable/torch.html#torch.gather instead of index_select
– Shai
Nov 27 '18 at 22:02
you want to look at pytorch.org/docs/stable/torch.html#torch.gather instead of index_select
– Shai
Nov 27 '18 at 22:02
add a comment |
1 Answer
1
active
oldest
votes
It turns out you can do this in a couple different ways. One with gather
and one with index
. From the PyTorch discussions where I asked the same question:
Using torch::gather
auto x = torch::randn({8, 6});
int64_t idx_data[8] = { 0, 3, 4, 4, 4, 4, 4, 4 };
auto idx = x.type().toScalarType(torch::kLong).tensorFromBlob(idx_data, 8);
auto result = x.gather(1, idx.unsqueeze(1));
Using the C++ specific torch::index
auto x = torch::randn({8, 6});
int64_t idx_data[8] = { 0, 3, 4, 4, 4, 4, 4, 4 };
auto idx = x.type().toScalarType(torch::kLong).tensorFromBlob(idx_data, 8);
auto rows = torch::arange(0, x.size(0), torch::kLong);
auto result = x.index({rows, idx});
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53507039%2frow-wise-element-indexing-in-pytorch-for-c%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
It turns out you can do this in a couple different ways. One with gather
and one with index
. From the PyTorch discussions where I asked the same question:
Using torch::gather
auto x = torch::randn({8, 6});
int64_t idx_data[8] = { 0, 3, 4, 4, 4, 4, 4, 4 };
auto idx = x.type().toScalarType(torch::kLong).tensorFromBlob(idx_data, 8);
auto result = x.gather(1, idx.unsqueeze(1));
Using the C++ specific torch::index
auto x = torch::randn({8, 6});
int64_t idx_data[8] = { 0, 3, 4, 4, 4, 4, 4, 4 };
auto idx = x.type().toScalarType(torch::kLong).tensorFromBlob(idx_data, 8);
auto rows = torch::arange(0, x.size(0), torch::kLong);
auto result = x.index({rows, idx});
add a comment |
It turns out you can do this in a couple different ways. One with gather
and one with index
. From the PyTorch discussions where I asked the same question:
Using torch::gather
auto x = torch::randn({8, 6});
int64_t idx_data[8] = { 0, 3, 4, 4, 4, 4, 4, 4 };
auto idx = x.type().toScalarType(torch::kLong).tensorFromBlob(idx_data, 8);
auto result = x.gather(1, idx.unsqueeze(1));
Using the C++ specific torch::index
auto x = torch::randn({8, 6});
int64_t idx_data[8] = { 0, 3, 4, 4, 4, 4, 4, 4 };
auto idx = x.type().toScalarType(torch::kLong).tensorFromBlob(idx_data, 8);
auto rows = torch::arange(0, x.size(0), torch::kLong);
auto result = x.index({rows, idx});
add a comment |
It turns out you can do this in a couple different ways. One with gather
and one with index
. From the PyTorch discussions where I asked the same question:
Using torch::gather
auto x = torch::randn({8, 6});
int64_t idx_data[8] = { 0, 3, 4, 4, 4, 4, 4, 4 };
auto idx = x.type().toScalarType(torch::kLong).tensorFromBlob(idx_data, 8);
auto result = x.gather(1, idx.unsqueeze(1));
Using the C++ specific torch::index
auto x = torch::randn({8, 6});
int64_t idx_data[8] = { 0, 3, 4, 4, 4, 4, 4, 4 };
auto idx = x.type().toScalarType(torch::kLong).tensorFromBlob(idx_data, 8);
auto rows = torch::arange(0, x.size(0), torch::kLong);
auto result = x.index({rows, idx});
It turns out you can do this in a couple different ways. One with gather
and one with index
. From the PyTorch discussions where I asked the same question:
Using torch::gather
auto x = torch::randn({8, 6});
int64_t idx_data[8] = { 0, 3, 4, 4, 4, 4, 4, 4 };
auto idx = x.type().toScalarType(torch::kLong).tensorFromBlob(idx_data, 8);
auto result = x.gather(1, idx.unsqueeze(1));
Using the C++ specific torch::index
auto x = torch::randn({8, 6});
int64_t idx_data[8] = { 0, 3, 4, 4, 4, 4, 4, 4 };
auto idx = x.type().toScalarType(torch::kLong).tensorFromBlob(idx_data, 8);
auto rows = torch::arange(0, x.size(0), torch::kLong);
auto result = x.index({rows, idx});
answered Nov 29 '18 at 5:16
JoshVartyJoshVarty
5,59633357
5,59633357
add a comment |
add a comment |
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53507039%2frow-wise-element-indexing-in-pytorch-for-c%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
2
you want to look at pytorch.org/docs/stable/torch.html#torch.gather instead of index_select
– Shai
Nov 27 '18 at 22:02