How to extract patristic distances from dendropy phylogenetic_distance_matrix
I have created a cophenetic distance matrix in dendropy using:
from dendropy.simulate import treesim
tree = treesim.birth_death_tree(birth_rate=1.0, death_rate=0.5, ntax=10)
pdm = tree.phylogenetic_distance_matrix()
However, having read the documentation and trying many things I cannot extract the actual matrix in a usable manner from the object "pdm"
NB there is a method as_data_table
with this class that I am also unable to fathom
python dendropy
add a comment |
I have created a cophenetic distance matrix in dendropy using:
from dendropy.simulate import treesim
tree = treesim.birth_death_tree(birth_rate=1.0, death_rate=0.5, ntax=10)
pdm = tree.phylogenetic_distance_matrix()
However, having read the documentation and trying many things I cannot extract the actual matrix in a usable manner from the object "pdm"
NB there is a method as_data_table
with this class that I am also unable to fathom
python dendropy
add a comment |
I have created a cophenetic distance matrix in dendropy using:
from dendropy.simulate import treesim
tree = treesim.birth_death_tree(birth_rate=1.0, death_rate=0.5, ntax=10)
pdm = tree.phylogenetic_distance_matrix()
However, having read the documentation and trying many things I cannot extract the actual matrix in a usable manner from the object "pdm"
NB there is a method as_data_table
with this class that I am also unable to fathom
python dendropy
I have created a cophenetic distance matrix in dendropy using:
from dendropy.simulate import treesim
tree = treesim.birth_death_tree(birth_rate=1.0, death_rate=0.5, ntax=10)
pdm = tree.phylogenetic_distance_matrix()
However, having read the documentation and trying many things I cannot extract the actual matrix in a usable manner from the object "pdm"
NB there is a method as_data_table
with this class that I am also unable to fathom
python dendropy
python dendropy
asked Nov 28 '18 at 15:25
user3329732user3329732
405
405
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
as_data_table()
returns an object of type dendropy.utility.container.DataTable
. This DataTable
is a custom container class, which implements lots of useful methods you can use to get at your data. You can read the source here to understand it:
https://dendropy.org/_modules/dendropy/utility/container.html
You can very quickly see the data in a format you can understand by looking at its _data
variable:
from dendropy.simulate import treesim
import pprint
tree = treesim.birth_death_tree(birth_rate=1.0, death_rate=0.5, ntax=10)
pdm = tree.phylogenetic_distance_matrix()
pp = pprint.PrettyPrinter(depth=2)
pp.pprint(pdm.as_data_table()._data)
Outputs:
{'T1': {'T1': 0.0,
'T10': 1.832709865628535,
'T2': 2.2418431376329204,
'T3': 1.8146189808922477,
'T4': 1.832709865628535,
'T5': 1.832709865628535,
'T6': 0.5848837844916799,
'T7': 0,
'T8': 1.6307174196094565,
'T9': 1.8146189808922477},
'T10': {'T1': 1.832709865628535,
'T10': 0.0,
'T2': 2.2418431376329204,
'T3': 1.832709865628535,
'T4': 0.8434862029618123,
'T5': 1.215095937098336,
'T6': 1.832709865628535,
'T7': 1.832709865628535,
'T8': 1.832709865628535,
'T9': 1.832709865628535},
'T2': {'T1': 2.2418431376329204,
'T10': 2.2418431376329204,
'T2': 0.0,
'T3': 2.2418431376329204,
'T4': 2.2418431376329204,
'T5': 2.2418431376329204,
'T6': 2.2418431376329204,
'T7': 2.2418431376329204,
'T8': 2.2418431376329204,
'T9': 2.2418431376329204},
'T3': {'T1': 1.8146189808922477,
'T10': 1.832709865628535,
'T2': 2.2418431376329204,
'T3': 0.0,
'T4': 1.832709865628535,
'T5': 1.832709865628535,
'T6': 1.8146189808922477,
'T7': 1.8146189808922477,
'T8': 1.8146189808922477,
'T9': 1.4811625503429378},
'T4': {'T1': 1.832709865628535,
'T10': 0.8434862029618123,
'T2': 2.2418431376329204,
'T3': 1.832709865628535,
'T4': 0.0,
'T5': 1.215095937098336,
'T6': 1.832709865628535,
'T7': 1.832709865628535,
'T8': 1.832709865628535,
'T9': 1.832709865628535},
'T5': {'T1': 1.832709865628535,
'T10': 1.215095937098336,
'T2': 2.2418431376329204,
'T3': 1.832709865628535,
'T4': 1.215095937098336,
'T5': 0.0,
'T6': 1.832709865628535,
'T7': 1.832709865628535,
'T8': 1.832709865628535,
'T9': 1.832709865628535},
'T6': {'T1': 0.5848837844916799,
'T10': 1.832709865628535,
'T2': 2.2418431376329204,
'T3': 1.8146189808922477,
'T4': 1.832709865628535,
'T5': 1.832709865628535,
'T6': 0.0,
'T7': 0.5848837844916799,
'T8': 1.6307174196094565,
'T9': 1.8146189808922477},
'T7': {'T1': 0,
'T10': 1.832709865628535,
'T2': 2.2418431376329204,
'T3': 1.8146189808922477,
'T4': 1.832709865628535,
'T5': 1.832709865628535,
'T6': 0.5848837844916799,
'T7': 0.0,
'T8': 1.6307174196094565,
'T9': 1.8146189808922477},
'T8': {'T1': 1.6307174196094565,
'T10': 1.832709865628535,
'T2': 2.2418431376329204,
'T3': 1.8146189808922477,
'T4': 1.832709865628535,
'T5': 1.832709865628535,
'T6': 1.6307174196094565,
'T7': 1.6307174196094565,
'T8': 0.0,
'T9': 1.8146189808922477},
'T9': {'T1': 1.8146189808922477,
'T10': 1.832709865628535,
'T2': 2.2418431376329204,
'T3': 1.4811625503429378,
'T4': 1.832709865628535,
'T5': 1.832709865628535,
'T6': 1.8146189808922477,
'T7': 1.8146189808922477,
'T8': 1.8146189808922477,
'T9': 0.0}}
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53522836%2fhow-to-extract-patristic-distances-from-dendropy-phylogenetic-distance-matrix%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
as_data_table()
returns an object of type dendropy.utility.container.DataTable
. This DataTable
is a custom container class, which implements lots of useful methods you can use to get at your data. You can read the source here to understand it:
https://dendropy.org/_modules/dendropy/utility/container.html
You can very quickly see the data in a format you can understand by looking at its _data
variable:
from dendropy.simulate import treesim
import pprint
tree = treesim.birth_death_tree(birth_rate=1.0, death_rate=0.5, ntax=10)
pdm = tree.phylogenetic_distance_matrix()
pp = pprint.PrettyPrinter(depth=2)
pp.pprint(pdm.as_data_table()._data)
Outputs:
{'T1': {'T1': 0.0,
'T10': 1.832709865628535,
'T2': 2.2418431376329204,
'T3': 1.8146189808922477,
'T4': 1.832709865628535,
'T5': 1.832709865628535,
'T6': 0.5848837844916799,
'T7': 0,
'T8': 1.6307174196094565,
'T9': 1.8146189808922477},
'T10': {'T1': 1.832709865628535,
'T10': 0.0,
'T2': 2.2418431376329204,
'T3': 1.832709865628535,
'T4': 0.8434862029618123,
'T5': 1.215095937098336,
'T6': 1.832709865628535,
'T7': 1.832709865628535,
'T8': 1.832709865628535,
'T9': 1.832709865628535},
'T2': {'T1': 2.2418431376329204,
'T10': 2.2418431376329204,
'T2': 0.0,
'T3': 2.2418431376329204,
'T4': 2.2418431376329204,
'T5': 2.2418431376329204,
'T6': 2.2418431376329204,
'T7': 2.2418431376329204,
'T8': 2.2418431376329204,
'T9': 2.2418431376329204},
'T3': {'T1': 1.8146189808922477,
'T10': 1.832709865628535,
'T2': 2.2418431376329204,
'T3': 0.0,
'T4': 1.832709865628535,
'T5': 1.832709865628535,
'T6': 1.8146189808922477,
'T7': 1.8146189808922477,
'T8': 1.8146189808922477,
'T9': 1.4811625503429378},
'T4': {'T1': 1.832709865628535,
'T10': 0.8434862029618123,
'T2': 2.2418431376329204,
'T3': 1.832709865628535,
'T4': 0.0,
'T5': 1.215095937098336,
'T6': 1.832709865628535,
'T7': 1.832709865628535,
'T8': 1.832709865628535,
'T9': 1.832709865628535},
'T5': {'T1': 1.832709865628535,
'T10': 1.215095937098336,
'T2': 2.2418431376329204,
'T3': 1.832709865628535,
'T4': 1.215095937098336,
'T5': 0.0,
'T6': 1.832709865628535,
'T7': 1.832709865628535,
'T8': 1.832709865628535,
'T9': 1.832709865628535},
'T6': {'T1': 0.5848837844916799,
'T10': 1.832709865628535,
'T2': 2.2418431376329204,
'T3': 1.8146189808922477,
'T4': 1.832709865628535,
'T5': 1.832709865628535,
'T6': 0.0,
'T7': 0.5848837844916799,
'T8': 1.6307174196094565,
'T9': 1.8146189808922477},
'T7': {'T1': 0,
'T10': 1.832709865628535,
'T2': 2.2418431376329204,
'T3': 1.8146189808922477,
'T4': 1.832709865628535,
'T5': 1.832709865628535,
'T6': 0.5848837844916799,
'T7': 0.0,
'T8': 1.6307174196094565,
'T9': 1.8146189808922477},
'T8': {'T1': 1.6307174196094565,
'T10': 1.832709865628535,
'T2': 2.2418431376329204,
'T3': 1.8146189808922477,
'T4': 1.832709865628535,
'T5': 1.832709865628535,
'T6': 1.6307174196094565,
'T7': 1.6307174196094565,
'T8': 0.0,
'T9': 1.8146189808922477},
'T9': {'T1': 1.8146189808922477,
'T10': 1.832709865628535,
'T2': 2.2418431376329204,
'T3': 1.4811625503429378,
'T4': 1.832709865628535,
'T5': 1.832709865628535,
'T6': 1.8146189808922477,
'T7': 1.8146189808922477,
'T8': 1.8146189808922477,
'T9': 0.0}}
add a comment |
as_data_table()
returns an object of type dendropy.utility.container.DataTable
. This DataTable
is a custom container class, which implements lots of useful methods you can use to get at your data. You can read the source here to understand it:
https://dendropy.org/_modules/dendropy/utility/container.html
You can very quickly see the data in a format you can understand by looking at its _data
variable:
from dendropy.simulate import treesim
import pprint
tree = treesim.birth_death_tree(birth_rate=1.0, death_rate=0.5, ntax=10)
pdm = tree.phylogenetic_distance_matrix()
pp = pprint.PrettyPrinter(depth=2)
pp.pprint(pdm.as_data_table()._data)
Outputs:
{'T1': {'T1': 0.0,
'T10': 1.832709865628535,
'T2': 2.2418431376329204,
'T3': 1.8146189808922477,
'T4': 1.832709865628535,
'T5': 1.832709865628535,
'T6': 0.5848837844916799,
'T7': 0,
'T8': 1.6307174196094565,
'T9': 1.8146189808922477},
'T10': {'T1': 1.832709865628535,
'T10': 0.0,
'T2': 2.2418431376329204,
'T3': 1.832709865628535,
'T4': 0.8434862029618123,
'T5': 1.215095937098336,
'T6': 1.832709865628535,
'T7': 1.832709865628535,
'T8': 1.832709865628535,
'T9': 1.832709865628535},
'T2': {'T1': 2.2418431376329204,
'T10': 2.2418431376329204,
'T2': 0.0,
'T3': 2.2418431376329204,
'T4': 2.2418431376329204,
'T5': 2.2418431376329204,
'T6': 2.2418431376329204,
'T7': 2.2418431376329204,
'T8': 2.2418431376329204,
'T9': 2.2418431376329204},
'T3': {'T1': 1.8146189808922477,
'T10': 1.832709865628535,
'T2': 2.2418431376329204,
'T3': 0.0,
'T4': 1.832709865628535,
'T5': 1.832709865628535,
'T6': 1.8146189808922477,
'T7': 1.8146189808922477,
'T8': 1.8146189808922477,
'T9': 1.4811625503429378},
'T4': {'T1': 1.832709865628535,
'T10': 0.8434862029618123,
'T2': 2.2418431376329204,
'T3': 1.832709865628535,
'T4': 0.0,
'T5': 1.215095937098336,
'T6': 1.832709865628535,
'T7': 1.832709865628535,
'T8': 1.832709865628535,
'T9': 1.832709865628535},
'T5': {'T1': 1.832709865628535,
'T10': 1.215095937098336,
'T2': 2.2418431376329204,
'T3': 1.832709865628535,
'T4': 1.215095937098336,
'T5': 0.0,
'T6': 1.832709865628535,
'T7': 1.832709865628535,
'T8': 1.832709865628535,
'T9': 1.832709865628535},
'T6': {'T1': 0.5848837844916799,
'T10': 1.832709865628535,
'T2': 2.2418431376329204,
'T3': 1.8146189808922477,
'T4': 1.832709865628535,
'T5': 1.832709865628535,
'T6': 0.0,
'T7': 0.5848837844916799,
'T8': 1.6307174196094565,
'T9': 1.8146189808922477},
'T7': {'T1': 0,
'T10': 1.832709865628535,
'T2': 2.2418431376329204,
'T3': 1.8146189808922477,
'T4': 1.832709865628535,
'T5': 1.832709865628535,
'T6': 0.5848837844916799,
'T7': 0.0,
'T8': 1.6307174196094565,
'T9': 1.8146189808922477},
'T8': {'T1': 1.6307174196094565,
'T10': 1.832709865628535,
'T2': 2.2418431376329204,
'T3': 1.8146189808922477,
'T4': 1.832709865628535,
'T5': 1.832709865628535,
'T6': 1.6307174196094565,
'T7': 1.6307174196094565,
'T8': 0.0,
'T9': 1.8146189808922477},
'T9': {'T1': 1.8146189808922477,
'T10': 1.832709865628535,
'T2': 2.2418431376329204,
'T3': 1.4811625503429378,
'T4': 1.832709865628535,
'T5': 1.832709865628535,
'T6': 1.8146189808922477,
'T7': 1.8146189808922477,
'T8': 1.8146189808922477,
'T9': 0.0}}
add a comment |
as_data_table()
returns an object of type dendropy.utility.container.DataTable
. This DataTable
is a custom container class, which implements lots of useful methods you can use to get at your data. You can read the source here to understand it:
https://dendropy.org/_modules/dendropy/utility/container.html
You can very quickly see the data in a format you can understand by looking at its _data
variable:
from dendropy.simulate import treesim
import pprint
tree = treesim.birth_death_tree(birth_rate=1.0, death_rate=0.5, ntax=10)
pdm = tree.phylogenetic_distance_matrix()
pp = pprint.PrettyPrinter(depth=2)
pp.pprint(pdm.as_data_table()._data)
Outputs:
{'T1': {'T1': 0.0,
'T10': 1.832709865628535,
'T2': 2.2418431376329204,
'T3': 1.8146189808922477,
'T4': 1.832709865628535,
'T5': 1.832709865628535,
'T6': 0.5848837844916799,
'T7': 0,
'T8': 1.6307174196094565,
'T9': 1.8146189808922477},
'T10': {'T1': 1.832709865628535,
'T10': 0.0,
'T2': 2.2418431376329204,
'T3': 1.832709865628535,
'T4': 0.8434862029618123,
'T5': 1.215095937098336,
'T6': 1.832709865628535,
'T7': 1.832709865628535,
'T8': 1.832709865628535,
'T9': 1.832709865628535},
'T2': {'T1': 2.2418431376329204,
'T10': 2.2418431376329204,
'T2': 0.0,
'T3': 2.2418431376329204,
'T4': 2.2418431376329204,
'T5': 2.2418431376329204,
'T6': 2.2418431376329204,
'T7': 2.2418431376329204,
'T8': 2.2418431376329204,
'T9': 2.2418431376329204},
'T3': {'T1': 1.8146189808922477,
'T10': 1.832709865628535,
'T2': 2.2418431376329204,
'T3': 0.0,
'T4': 1.832709865628535,
'T5': 1.832709865628535,
'T6': 1.8146189808922477,
'T7': 1.8146189808922477,
'T8': 1.8146189808922477,
'T9': 1.4811625503429378},
'T4': {'T1': 1.832709865628535,
'T10': 0.8434862029618123,
'T2': 2.2418431376329204,
'T3': 1.832709865628535,
'T4': 0.0,
'T5': 1.215095937098336,
'T6': 1.832709865628535,
'T7': 1.832709865628535,
'T8': 1.832709865628535,
'T9': 1.832709865628535},
'T5': {'T1': 1.832709865628535,
'T10': 1.215095937098336,
'T2': 2.2418431376329204,
'T3': 1.832709865628535,
'T4': 1.215095937098336,
'T5': 0.0,
'T6': 1.832709865628535,
'T7': 1.832709865628535,
'T8': 1.832709865628535,
'T9': 1.832709865628535},
'T6': {'T1': 0.5848837844916799,
'T10': 1.832709865628535,
'T2': 2.2418431376329204,
'T3': 1.8146189808922477,
'T4': 1.832709865628535,
'T5': 1.832709865628535,
'T6': 0.0,
'T7': 0.5848837844916799,
'T8': 1.6307174196094565,
'T9': 1.8146189808922477},
'T7': {'T1': 0,
'T10': 1.832709865628535,
'T2': 2.2418431376329204,
'T3': 1.8146189808922477,
'T4': 1.832709865628535,
'T5': 1.832709865628535,
'T6': 0.5848837844916799,
'T7': 0.0,
'T8': 1.6307174196094565,
'T9': 1.8146189808922477},
'T8': {'T1': 1.6307174196094565,
'T10': 1.832709865628535,
'T2': 2.2418431376329204,
'T3': 1.8146189808922477,
'T4': 1.832709865628535,
'T5': 1.832709865628535,
'T6': 1.6307174196094565,
'T7': 1.6307174196094565,
'T8': 0.0,
'T9': 1.8146189808922477},
'T9': {'T1': 1.8146189808922477,
'T10': 1.832709865628535,
'T2': 2.2418431376329204,
'T3': 1.4811625503429378,
'T4': 1.832709865628535,
'T5': 1.832709865628535,
'T6': 1.8146189808922477,
'T7': 1.8146189808922477,
'T8': 1.8146189808922477,
'T9': 0.0}}
as_data_table()
returns an object of type dendropy.utility.container.DataTable
. This DataTable
is a custom container class, which implements lots of useful methods you can use to get at your data. You can read the source here to understand it:
https://dendropy.org/_modules/dendropy/utility/container.html
You can very quickly see the data in a format you can understand by looking at its _data
variable:
from dendropy.simulate import treesim
import pprint
tree = treesim.birth_death_tree(birth_rate=1.0, death_rate=0.5, ntax=10)
pdm = tree.phylogenetic_distance_matrix()
pp = pprint.PrettyPrinter(depth=2)
pp.pprint(pdm.as_data_table()._data)
Outputs:
{'T1': {'T1': 0.0,
'T10': 1.832709865628535,
'T2': 2.2418431376329204,
'T3': 1.8146189808922477,
'T4': 1.832709865628535,
'T5': 1.832709865628535,
'T6': 0.5848837844916799,
'T7': 0,
'T8': 1.6307174196094565,
'T9': 1.8146189808922477},
'T10': {'T1': 1.832709865628535,
'T10': 0.0,
'T2': 2.2418431376329204,
'T3': 1.832709865628535,
'T4': 0.8434862029618123,
'T5': 1.215095937098336,
'T6': 1.832709865628535,
'T7': 1.832709865628535,
'T8': 1.832709865628535,
'T9': 1.832709865628535},
'T2': {'T1': 2.2418431376329204,
'T10': 2.2418431376329204,
'T2': 0.0,
'T3': 2.2418431376329204,
'T4': 2.2418431376329204,
'T5': 2.2418431376329204,
'T6': 2.2418431376329204,
'T7': 2.2418431376329204,
'T8': 2.2418431376329204,
'T9': 2.2418431376329204},
'T3': {'T1': 1.8146189808922477,
'T10': 1.832709865628535,
'T2': 2.2418431376329204,
'T3': 0.0,
'T4': 1.832709865628535,
'T5': 1.832709865628535,
'T6': 1.8146189808922477,
'T7': 1.8146189808922477,
'T8': 1.8146189808922477,
'T9': 1.4811625503429378},
'T4': {'T1': 1.832709865628535,
'T10': 0.8434862029618123,
'T2': 2.2418431376329204,
'T3': 1.832709865628535,
'T4': 0.0,
'T5': 1.215095937098336,
'T6': 1.832709865628535,
'T7': 1.832709865628535,
'T8': 1.832709865628535,
'T9': 1.832709865628535},
'T5': {'T1': 1.832709865628535,
'T10': 1.215095937098336,
'T2': 2.2418431376329204,
'T3': 1.832709865628535,
'T4': 1.215095937098336,
'T5': 0.0,
'T6': 1.832709865628535,
'T7': 1.832709865628535,
'T8': 1.832709865628535,
'T9': 1.832709865628535},
'T6': {'T1': 0.5848837844916799,
'T10': 1.832709865628535,
'T2': 2.2418431376329204,
'T3': 1.8146189808922477,
'T4': 1.832709865628535,
'T5': 1.832709865628535,
'T6': 0.0,
'T7': 0.5848837844916799,
'T8': 1.6307174196094565,
'T9': 1.8146189808922477},
'T7': {'T1': 0,
'T10': 1.832709865628535,
'T2': 2.2418431376329204,
'T3': 1.8146189808922477,
'T4': 1.832709865628535,
'T5': 1.832709865628535,
'T6': 0.5848837844916799,
'T7': 0.0,
'T8': 1.6307174196094565,
'T9': 1.8146189808922477},
'T8': {'T1': 1.6307174196094565,
'T10': 1.832709865628535,
'T2': 2.2418431376329204,
'T3': 1.8146189808922477,
'T4': 1.832709865628535,
'T5': 1.832709865628535,
'T6': 1.6307174196094565,
'T7': 1.6307174196094565,
'T8': 0.0,
'T9': 1.8146189808922477},
'T9': {'T1': 1.8146189808922477,
'T10': 1.832709865628535,
'T2': 2.2418431376329204,
'T3': 1.4811625503429378,
'T4': 1.832709865628535,
'T5': 1.832709865628535,
'T6': 1.8146189808922477,
'T7': 1.8146189808922477,
'T8': 1.8146189808922477,
'T9': 0.0}}
answered Nov 28 '18 at 15:42
Rob BrichenoRob Bricheno
2,450420
2,450420
add a comment |
add a comment |
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53522836%2fhow-to-extract-patristic-distances-from-dendropy-phylogenetic-distance-matrix%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown