parameter impurity given invalid value gini












0















I am reading this book. I am using Spark 2.4.0 on Scala 2.12 (standalone single machine cluster)



Based on this book's example I wrote this code



val model = new RandomForestRegressor()
.setFeaturesCol("features")
.setLabelCol("label")
.setImpurity("gini")
.setMaxBins(20)
.setMaxDepth(20)
.setNumTrees(50)


But I get an error



Exception in thread "main" java.lang.IllegalArgumentException: 
rfr_dc9303ee1fc9 parameter impurity given invalid value gini.
[error] at org.apache.spark.ml.param.Param.validate(params.scala:78)
[error] at org.apache.spark.ml.param.ParamPair.<init>(params.scala:656)
[error] at org.apache.spark.ml.param.Param.$minus$greater(params.scala:87)
[error] at org.apache.spark.ml.param.Params.set(params.scala:737)
[error] at org.apache.spark.ml.param.Params.set$(params.scala:736)
[error] at org.apache.spark.ml.PipelineStage.set(Pipeline.scala:42)


Full code at: https://github.com/abhsrivastava/allstate/blob/master/src/main/scala/com/abhi/RandomForestRegression.scala










share|improve this question


















  • 1





    gini is not an available option, variance is the only one according to the docs spark.apache.org/docs/latest/api/scala/…. gini and entropy are options available with random forest classification

    – sramalingam24
    Nov 27 '18 at 5:37













  • that resolved it thanks. I don't know why the book provided the wrong code sample.

    – Knows Not Much
    Nov 27 '18 at 6:24
















0















I am reading this book. I am using Spark 2.4.0 on Scala 2.12 (standalone single machine cluster)



Based on this book's example I wrote this code



val model = new RandomForestRegressor()
.setFeaturesCol("features")
.setLabelCol("label")
.setImpurity("gini")
.setMaxBins(20)
.setMaxDepth(20)
.setNumTrees(50)


But I get an error



Exception in thread "main" java.lang.IllegalArgumentException: 
rfr_dc9303ee1fc9 parameter impurity given invalid value gini.
[error] at org.apache.spark.ml.param.Param.validate(params.scala:78)
[error] at org.apache.spark.ml.param.ParamPair.<init>(params.scala:656)
[error] at org.apache.spark.ml.param.Param.$minus$greater(params.scala:87)
[error] at org.apache.spark.ml.param.Params.set(params.scala:737)
[error] at org.apache.spark.ml.param.Params.set$(params.scala:736)
[error] at org.apache.spark.ml.PipelineStage.set(Pipeline.scala:42)


Full code at: https://github.com/abhsrivastava/allstate/blob/master/src/main/scala/com/abhi/RandomForestRegression.scala










share|improve this question


















  • 1





    gini is not an available option, variance is the only one according to the docs spark.apache.org/docs/latest/api/scala/…. gini and entropy are options available with random forest classification

    – sramalingam24
    Nov 27 '18 at 5:37













  • that resolved it thanks. I don't know why the book provided the wrong code sample.

    – Knows Not Much
    Nov 27 '18 at 6:24














0












0








0








I am reading this book. I am using Spark 2.4.0 on Scala 2.12 (standalone single machine cluster)



Based on this book's example I wrote this code



val model = new RandomForestRegressor()
.setFeaturesCol("features")
.setLabelCol("label")
.setImpurity("gini")
.setMaxBins(20)
.setMaxDepth(20)
.setNumTrees(50)


But I get an error



Exception in thread "main" java.lang.IllegalArgumentException: 
rfr_dc9303ee1fc9 parameter impurity given invalid value gini.
[error] at org.apache.spark.ml.param.Param.validate(params.scala:78)
[error] at org.apache.spark.ml.param.ParamPair.<init>(params.scala:656)
[error] at org.apache.spark.ml.param.Param.$minus$greater(params.scala:87)
[error] at org.apache.spark.ml.param.Params.set(params.scala:737)
[error] at org.apache.spark.ml.param.Params.set$(params.scala:736)
[error] at org.apache.spark.ml.PipelineStage.set(Pipeline.scala:42)


Full code at: https://github.com/abhsrivastava/allstate/blob/master/src/main/scala/com/abhi/RandomForestRegression.scala










share|improve this question














I am reading this book. I am using Spark 2.4.0 on Scala 2.12 (standalone single machine cluster)



Based on this book's example I wrote this code



val model = new RandomForestRegressor()
.setFeaturesCol("features")
.setLabelCol("label")
.setImpurity("gini")
.setMaxBins(20)
.setMaxDepth(20)
.setNumTrees(50)


But I get an error



Exception in thread "main" java.lang.IllegalArgumentException: 
rfr_dc9303ee1fc9 parameter impurity given invalid value gini.
[error] at org.apache.spark.ml.param.Param.validate(params.scala:78)
[error] at org.apache.spark.ml.param.ParamPair.<init>(params.scala:656)
[error] at org.apache.spark.ml.param.Param.$minus$greater(params.scala:87)
[error] at org.apache.spark.ml.param.Params.set(params.scala:737)
[error] at org.apache.spark.ml.param.Params.set$(params.scala:736)
[error] at org.apache.spark.ml.PipelineStage.set(Pipeline.scala:42)


Full code at: https://github.com/abhsrivastava/allstate/blob/master/src/main/scala/com/abhi/RandomForestRegression.scala







scala apache-spark apache-spark-ml






share|improve this question













share|improve this question











share|improve this question




share|improve this question










asked Nov 27 '18 at 5:31









Knows Not MuchKnows Not Much

10.7k28102208




10.7k28102208








  • 1





    gini is not an available option, variance is the only one according to the docs spark.apache.org/docs/latest/api/scala/…. gini and entropy are options available with random forest classification

    – sramalingam24
    Nov 27 '18 at 5:37













  • that resolved it thanks. I don't know why the book provided the wrong code sample.

    – Knows Not Much
    Nov 27 '18 at 6:24














  • 1





    gini is not an available option, variance is the only one according to the docs spark.apache.org/docs/latest/api/scala/…. gini and entropy are options available with random forest classification

    – sramalingam24
    Nov 27 '18 at 5:37













  • that resolved it thanks. I don't know why the book provided the wrong code sample.

    – Knows Not Much
    Nov 27 '18 at 6:24








1




1





gini is not an available option, variance is the only one according to the docs spark.apache.org/docs/latest/api/scala/…. gini and entropy are options available with random forest classification

– sramalingam24
Nov 27 '18 at 5:37







gini is not an available option, variance is the only one according to the docs spark.apache.org/docs/latest/api/scala/…. gini and entropy are options available with random forest classification

– sramalingam24
Nov 27 '18 at 5:37















that resolved it thanks. I don't know why the book provided the wrong code sample.

– Knows Not Much
Nov 27 '18 at 6:24





that resolved it thanks. I don't know why the book provided the wrong code sample.

– Knows Not Much
Nov 27 '18 at 6:24












0






active

oldest

votes











Your Answer






StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53493302%2fparameter-impurity-given-invalid-value-gini%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Stack Overflow!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53493302%2fparameter-impurity-given-invalid-value-gini%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

A CLEAN and SIMPLE way to add appendices to Table of Contents and bookmarks

Calculate evaluation metrics using cross_val_predict sklearn

Insert data from modal to MySQL (multiple modal on website)