probability from mean and std in bounded set
We have discrete and bounded data. From a to b, mean c, and std d
So how can I compute the probability at each discrete point, from the std and mean
This is the so far work, but works for 'heads' or tails only or p 0.5 for each event, eg computes the probability of getting 3 right out of 8, and 4 right out of 8 and 8 right out of that many coin tosses. Hence how to insert mean and std? For example you have 10 events and predict right 4,10,10,4 of those in 4 attempts. Mean is 7, std 3, so how to get p(8)?
from __future__ import division
def powersetCardinale(members_):
return (2 ** members_)
def factorial(n):
if n == 0:
return 1
else:
return n * factorial(n - 1)
def factorialQuicker(n, r):
if n == r:
return 1
else:
return n * factorialQuicker(n - 1, r)
def combination(n, r):
if (r == 0): return 1
if (n < r): return 0
return (factorialQuicker(n, r) / factorial(n - r))
k = 33
values = range(k + 1)
prob = values
for i in range(len(prob)):
prob[i] = combination(len(prob)-1 , prob[i]) / powersetCardinale(k)
sum(prob)
plt.plot(prob)
print(prob)
numpy scipy standard-deviation probability-density
add a comment |
We have discrete and bounded data. From a to b, mean c, and std d
So how can I compute the probability at each discrete point, from the std and mean
This is the so far work, but works for 'heads' or tails only or p 0.5 for each event, eg computes the probability of getting 3 right out of 8, and 4 right out of 8 and 8 right out of that many coin tosses. Hence how to insert mean and std? For example you have 10 events and predict right 4,10,10,4 of those in 4 attempts. Mean is 7, std 3, so how to get p(8)?
from __future__ import division
def powersetCardinale(members_):
return (2 ** members_)
def factorial(n):
if n == 0:
return 1
else:
return n * factorial(n - 1)
def factorialQuicker(n, r):
if n == r:
return 1
else:
return n * factorialQuicker(n - 1, r)
def combination(n, r):
if (r == 0): return 1
if (n < r): return 0
return (factorialQuicker(n, r) / factorial(n - r))
k = 33
values = range(k + 1)
prob = values
for i in range(len(prob)):
prob[i] = combination(len(prob)-1 , prob[i]) / powersetCardinale(k)
sum(prob)
plt.plot(prob)
print(prob)
numpy scipy standard-deviation probability-density
add a comment |
We have discrete and bounded data. From a to b, mean c, and std d
So how can I compute the probability at each discrete point, from the std and mean
This is the so far work, but works for 'heads' or tails only or p 0.5 for each event, eg computes the probability of getting 3 right out of 8, and 4 right out of 8 and 8 right out of that many coin tosses. Hence how to insert mean and std? For example you have 10 events and predict right 4,10,10,4 of those in 4 attempts. Mean is 7, std 3, so how to get p(8)?
from __future__ import division
def powersetCardinale(members_):
return (2 ** members_)
def factorial(n):
if n == 0:
return 1
else:
return n * factorial(n - 1)
def factorialQuicker(n, r):
if n == r:
return 1
else:
return n * factorialQuicker(n - 1, r)
def combination(n, r):
if (r == 0): return 1
if (n < r): return 0
return (factorialQuicker(n, r) / factorial(n - r))
k = 33
values = range(k + 1)
prob = values
for i in range(len(prob)):
prob[i] = combination(len(prob)-1 , prob[i]) / powersetCardinale(k)
sum(prob)
plt.plot(prob)
print(prob)
numpy scipy standard-deviation probability-density
We have discrete and bounded data. From a to b, mean c, and std d
So how can I compute the probability at each discrete point, from the std and mean
This is the so far work, but works for 'heads' or tails only or p 0.5 for each event, eg computes the probability of getting 3 right out of 8, and 4 right out of 8 and 8 right out of that many coin tosses. Hence how to insert mean and std? For example you have 10 events and predict right 4,10,10,4 of those in 4 attempts. Mean is 7, std 3, so how to get p(8)?
from __future__ import division
def powersetCardinale(members_):
return (2 ** members_)
def factorial(n):
if n == 0:
return 1
else:
return n * factorial(n - 1)
def factorialQuicker(n, r):
if n == r:
return 1
else:
return n * factorialQuicker(n - 1, r)
def combination(n, r):
if (r == 0): return 1
if (n < r): return 0
return (factorialQuicker(n, r) / factorial(n - r))
k = 33
values = range(k + 1)
prob = values
for i in range(len(prob)):
prob[i] = combination(len(prob)-1 , prob[i]) / powersetCardinale(k)
sum(prob)
plt.plot(prob)
print(prob)
numpy scipy standard-deviation probability-density
numpy scipy standard-deviation probability-density
edited Nov 24 '18 at 1:58
Edu Ariño Pelegrín
asked Nov 24 '18 at 1:24
Edu Ariño PelegrínEdu Ariño Pelegrín
13
13
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53454396%2fprobability-from-mean-and-std-in-bounded-set%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53454396%2fprobability-from-mean-and-std-in-bounded-set%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown