Apply same string status to all rows with similar application id and user id
For different combinations user_status_1
and user_status_2
and application_status=='complete'
I have created an ultimate status, namely final_status
. I want to apply the same final_status
to all rows with same application_id
and user_id
. Please check beneath for a desired outcome.
My dataset
library(data.table)
library(dplyr)
df <- data.table(application_id = c(1,1,1,2,2,2,3,3,3),
user_id = c(123,123,123,456,456,456,789,789,789),
date = c("01/01/2018", "02/01/2018", "03/01/2018"),
application_status = c("incomplete", "details_verified", "complete"),
user_status_1 = c("x", "y", "z", "x", "y", "z", "x", "y", "z"),
user_status_2 = c("a","b", "c", "d", "e", "f", "g", "h", "i")) %>%
mutate(date = as.Date(date, "%d/%m/%Y"))
With outcome
application_id user_id date application_status user_status_1 user_status_2
1 123 2018-01-01 incomplete x a
1 123 2018-01-02 details_verified y b
1 123 2018-01-03 complete z c
2 456 2018-01-01 incomplete x d
2 456 2018-01-02 details_verified y e
2 456 2018-01-03 complete z f
3 789 2018-01-01 incomplete x g
3 789 2018-01-02 details_verified y h
3 789 2018-01-03 complete z i
My unsuccessful effort
df %>% group_by(application_id, user_id) %>%
mutate(final_status = case_when(any(
application_status == "complete" & user_status_1 == "z" & user_status_2 == "c" ~ "good",
application_status == "complete" & user_status_1 == "z" & user_status_2 == "f" ~ "great",
application_status == "complete" & user_status_1 == "z" & user_status_2 == "i" ~ "excellent"
)))
Desired outcome *(scroll horizontally to view all columns)*
application_id user_id date application_status user_status_1 user_status_2 final_status
1 123 2018-01-01 incomplete x a good
1 123 2018-01-02 details_verified y b good
1 123 2018-01-03 complete z c good
2 456 2018-01-01 incomplete x d great
2 456 2018-01-02 details_verified y e great
2 456 2018-01-03 complete z f great
3 789 2018-01-01 incomplete x g excellent
3 789 2018-01-02 details_verified y h excellent
3 789 2018-01-03 complete z i excellent
r dplyr data-manipulation
add a comment |
For different combinations user_status_1
and user_status_2
and application_status=='complete'
I have created an ultimate status, namely final_status
. I want to apply the same final_status
to all rows with same application_id
and user_id
. Please check beneath for a desired outcome.
My dataset
library(data.table)
library(dplyr)
df <- data.table(application_id = c(1,1,1,2,2,2,3,3,3),
user_id = c(123,123,123,456,456,456,789,789,789),
date = c("01/01/2018", "02/01/2018", "03/01/2018"),
application_status = c("incomplete", "details_verified", "complete"),
user_status_1 = c("x", "y", "z", "x", "y", "z", "x", "y", "z"),
user_status_2 = c("a","b", "c", "d", "e", "f", "g", "h", "i")) %>%
mutate(date = as.Date(date, "%d/%m/%Y"))
With outcome
application_id user_id date application_status user_status_1 user_status_2
1 123 2018-01-01 incomplete x a
1 123 2018-01-02 details_verified y b
1 123 2018-01-03 complete z c
2 456 2018-01-01 incomplete x d
2 456 2018-01-02 details_verified y e
2 456 2018-01-03 complete z f
3 789 2018-01-01 incomplete x g
3 789 2018-01-02 details_verified y h
3 789 2018-01-03 complete z i
My unsuccessful effort
df %>% group_by(application_id, user_id) %>%
mutate(final_status = case_when(any(
application_status == "complete" & user_status_1 == "z" & user_status_2 == "c" ~ "good",
application_status == "complete" & user_status_1 == "z" & user_status_2 == "f" ~ "great",
application_status == "complete" & user_status_1 == "z" & user_status_2 == "i" ~ "excellent"
)))
Desired outcome *(scroll horizontally to view all columns)*
application_id user_id date application_status user_status_1 user_status_2 final_status
1 123 2018-01-01 incomplete x a good
1 123 2018-01-02 details_verified y b good
1 123 2018-01-03 complete z c good
2 456 2018-01-01 incomplete x d great
2 456 2018-01-02 details_verified y e great
2 456 2018-01-03 complete z f great
3 789 2018-01-01 incomplete x g excellent
3 789 2018-01-02 details_verified y h excellent
3 789 2018-01-03 complete z i excellent
r dplyr data-manipulation
add a comment |
For different combinations user_status_1
and user_status_2
and application_status=='complete'
I have created an ultimate status, namely final_status
. I want to apply the same final_status
to all rows with same application_id
and user_id
. Please check beneath for a desired outcome.
My dataset
library(data.table)
library(dplyr)
df <- data.table(application_id = c(1,1,1,2,2,2,3,3,3),
user_id = c(123,123,123,456,456,456,789,789,789),
date = c("01/01/2018", "02/01/2018", "03/01/2018"),
application_status = c("incomplete", "details_verified", "complete"),
user_status_1 = c("x", "y", "z", "x", "y", "z", "x", "y", "z"),
user_status_2 = c("a","b", "c", "d", "e", "f", "g", "h", "i")) %>%
mutate(date = as.Date(date, "%d/%m/%Y"))
With outcome
application_id user_id date application_status user_status_1 user_status_2
1 123 2018-01-01 incomplete x a
1 123 2018-01-02 details_verified y b
1 123 2018-01-03 complete z c
2 456 2018-01-01 incomplete x d
2 456 2018-01-02 details_verified y e
2 456 2018-01-03 complete z f
3 789 2018-01-01 incomplete x g
3 789 2018-01-02 details_verified y h
3 789 2018-01-03 complete z i
My unsuccessful effort
df %>% group_by(application_id, user_id) %>%
mutate(final_status = case_when(any(
application_status == "complete" & user_status_1 == "z" & user_status_2 == "c" ~ "good",
application_status == "complete" & user_status_1 == "z" & user_status_2 == "f" ~ "great",
application_status == "complete" & user_status_1 == "z" & user_status_2 == "i" ~ "excellent"
)))
Desired outcome *(scroll horizontally to view all columns)*
application_id user_id date application_status user_status_1 user_status_2 final_status
1 123 2018-01-01 incomplete x a good
1 123 2018-01-02 details_verified y b good
1 123 2018-01-03 complete z c good
2 456 2018-01-01 incomplete x d great
2 456 2018-01-02 details_verified y e great
2 456 2018-01-03 complete z f great
3 789 2018-01-01 incomplete x g excellent
3 789 2018-01-02 details_verified y h excellent
3 789 2018-01-03 complete z i excellent
r dplyr data-manipulation
For different combinations user_status_1
and user_status_2
and application_status=='complete'
I have created an ultimate status, namely final_status
. I want to apply the same final_status
to all rows with same application_id
and user_id
. Please check beneath for a desired outcome.
My dataset
library(data.table)
library(dplyr)
df <- data.table(application_id = c(1,1,1,2,2,2,3,3,3),
user_id = c(123,123,123,456,456,456,789,789,789),
date = c("01/01/2018", "02/01/2018", "03/01/2018"),
application_status = c("incomplete", "details_verified", "complete"),
user_status_1 = c("x", "y", "z", "x", "y", "z", "x", "y", "z"),
user_status_2 = c("a","b", "c", "d", "e", "f", "g", "h", "i")) %>%
mutate(date = as.Date(date, "%d/%m/%Y"))
With outcome
application_id user_id date application_status user_status_1 user_status_2
1 123 2018-01-01 incomplete x a
1 123 2018-01-02 details_verified y b
1 123 2018-01-03 complete z c
2 456 2018-01-01 incomplete x d
2 456 2018-01-02 details_verified y e
2 456 2018-01-03 complete z f
3 789 2018-01-01 incomplete x g
3 789 2018-01-02 details_verified y h
3 789 2018-01-03 complete z i
My unsuccessful effort
df %>% group_by(application_id, user_id) %>%
mutate(final_status = case_when(any(
application_status == "complete" & user_status_1 == "z" & user_status_2 == "c" ~ "good",
application_status == "complete" & user_status_1 == "z" & user_status_2 == "f" ~ "great",
application_status == "complete" & user_status_1 == "z" & user_status_2 == "i" ~ "excellent"
)))
Desired outcome *(scroll horizontally to view all columns)*
application_id user_id date application_status user_status_1 user_status_2 final_status
1 123 2018-01-01 incomplete x a good
1 123 2018-01-02 details_verified y b good
1 123 2018-01-03 complete z c good
2 456 2018-01-01 incomplete x d great
2 456 2018-01-02 details_verified y e great
2 456 2018-01-03 complete z f great
3 789 2018-01-01 incomplete x g excellent
3 789 2018-01-02 details_verified y h excellent
3 789 2018-01-03 complete z i excellent
r dplyr data-manipulation
r dplyr data-manipulation
asked Nov 22 at 20:22
Greconomist
130111
130111
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
You came close – you simply need to wrap each of the logical statements with any
.
df %>%
group_by(application_id, user_id) %>%
mutate(final_status = case_when(
any(application_status == "complete" & user_status_1 == "z" & user_status_2 == "c") ~ "good",
any(application_status == "complete" & user_status_1 == "z" & user_status_2 == "f") ~ "great",
any(application_status == "complete" & user_status_1 == "z" & user_status_2 == "i") ~ "excellent"
))
add a comment |
Here is one option by creating a named
vector first
library(data.table)
nm1 <- setNames(c('good', 'great', 'excellent'),
c('completezc', 'completezf', 'completezi'))
nm2 <- do.call(paste0, df[4:6])
setDT(df)[, final_status := nm1[nm2]][,
final_status := final_status[complete.cases(final_status)],
.(application_id, user_id)]
df
# application_id user_id date application_status user_status_1 user_status_2 final_status
#1: 1 123 2018-01-01 incomplete x a good
#2: 1 123 2018-01-02 details_verified y b good
#3: 1 123 2018-01-03 complete z c good
#4: 2 456 2018-01-01 incomplete x d great
#5: 2 456 2018-01-02 details_verified y e great
#6: 2 456 2018-01-03 complete z f great
#7: 3 789 2018-01-01 incomplete x g excellent
#8: 3 789 2018-01-02 details_verified y h excellent
#9: 3 789 2018-01-03 complete z i excellent
Or do a join in tidyverse
library(tidyverse)
df %>%
unite(newcol, !!! rlang::syms(names(.)[4:6]), sep="") %>%
filter(str_detect(newcol, '^complete')) %>%
transmute(application_id, user_id, final_status = nm1[newcol]) %>%
right_join(df)
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53437610%2fapply-same-string-status-to-all-rows-with-similar-application-id-and-user-id%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
You came close – you simply need to wrap each of the logical statements with any
.
df %>%
group_by(application_id, user_id) %>%
mutate(final_status = case_when(
any(application_status == "complete" & user_status_1 == "z" & user_status_2 == "c") ~ "good",
any(application_status == "complete" & user_status_1 == "z" & user_status_2 == "f") ~ "great",
any(application_status == "complete" & user_status_1 == "z" & user_status_2 == "i") ~ "excellent"
))
add a comment |
You came close – you simply need to wrap each of the logical statements with any
.
df %>%
group_by(application_id, user_id) %>%
mutate(final_status = case_when(
any(application_status == "complete" & user_status_1 == "z" & user_status_2 == "c") ~ "good",
any(application_status == "complete" & user_status_1 == "z" & user_status_2 == "f") ~ "great",
any(application_status == "complete" & user_status_1 == "z" & user_status_2 == "i") ~ "excellent"
))
add a comment |
You came close – you simply need to wrap each of the logical statements with any
.
df %>%
group_by(application_id, user_id) %>%
mutate(final_status = case_when(
any(application_status == "complete" & user_status_1 == "z" & user_status_2 == "c") ~ "good",
any(application_status == "complete" & user_status_1 == "z" & user_status_2 == "f") ~ "great",
any(application_status == "complete" & user_status_1 == "z" & user_status_2 == "i") ~ "excellent"
))
You came close – you simply need to wrap each of the logical statements with any
.
df %>%
group_by(application_id, user_id) %>%
mutate(final_status = case_when(
any(application_status == "complete" & user_status_1 == "z" & user_status_2 == "c") ~ "good",
any(application_status == "complete" & user_status_1 == "z" & user_status_2 == "f") ~ "great",
any(application_status == "complete" & user_status_1 == "z" & user_status_2 == "i") ~ "excellent"
))
answered Nov 22 at 20:48
Thomas K
2,178618
2,178618
add a comment |
add a comment |
Here is one option by creating a named
vector first
library(data.table)
nm1 <- setNames(c('good', 'great', 'excellent'),
c('completezc', 'completezf', 'completezi'))
nm2 <- do.call(paste0, df[4:6])
setDT(df)[, final_status := nm1[nm2]][,
final_status := final_status[complete.cases(final_status)],
.(application_id, user_id)]
df
# application_id user_id date application_status user_status_1 user_status_2 final_status
#1: 1 123 2018-01-01 incomplete x a good
#2: 1 123 2018-01-02 details_verified y b good
#3: 1 123 2018-01-03 complete z c good
#4: 2 456 2018-01-01 incomplete x d great
#5: 2 456 2018-01-02 details_verified y e great
#6: 2 456 2018-01-03 complete z f great
#7: 3 789 2018-01-01 incomplete x g excellent
#8: 3 789 2018-01-02 details_verified y h excellent
#9: 3 789 2018-01-03 complete z i excellent
Or do a join in tidyverse
library(tidyverse)
df %>%
unite(newcol, !!! rlang::syms(names(.)[4:6]), sep="") %>%
filter(str_detect(newcol, '^complete')) %>%
transmute(application_id, user_id, final_status = nm1[newcol]) %>%
right_join(df)
add a comment |
Here is one option by creating a named
vector first
library(data.table)
nm1 <- setNames(c('good', 'great', 'excellent'),
c('completezc', 'completezf', 'completezi'))
nm2 <- do.call(paste0, df[4:6])
setDT(df)[, final_status := nm1[nm2]][,
final_status := final_status[complete.cases(final_status)],
.(application_id, user_id)]
df
# application_id user_id date application_status user_status_1 user_status_2 final_status
#1: 1 123 2018-01-01 incomplete x a good
#2: 1 123 2018-01-02 details_verified y b good
#3: 1 123 2018-01-03 complete z c good
#4: 2 456 2018-01-01 incomplete x d great
#5: 2 456 2018-01-02 details_verified y e great
#6: 2 456 2018-01-03 complete z f great
#7: 3 789 2018-01-01 incomplete x g excellent
#8: 3 789 2018-01-02 details_verified y h excellent
#9: 3 789 2018-01-03 complete z i excellent
Or do a join in tidyverse
library(tidyverse)
df %>%
unite(newcol, !!! rlang::syms(names(.)[4:6]), sep="") %>%
filter(str_detect(newcol, '^complete')) %>%
transmute(application_id, user_id, final_status = nm1[newcol]) %>%
right_join(df)
add a comment |
Here is one option by creating a named
vector first
library(data.table)
nm1 <- setNames(c('good', 'great', 'excellent'),
c('completezc', 'completezf', 'completezi'))
nm2 <- do.call(paste0, df[4:6])
setDT(df)[, final_status := nm1[nm2]][,
final_status := final_status[complete.cases(final_status)],
.(application_id, user_id)]
df
# application_id user_id date application_status user_status_1 user_status_2 final_status
#1: 1 123 2018-01-01 incomplete x a good
#2: 1 123 2018-01-02 details_verified y b good
#3: 1 123 2018-01-03 complete z c good
#4: 2 456 2018-01-01 incomplete x d great
#5: 2 456 2018-01-02 details_verified y e great
#6: 2 456 2018-01-03 complete z f great
#7: 3 789 2018-01-01 incomplete x g excellent
#8: 3 789 2018-01-02 details_verified y h excellent
#9: 3 789 2018-01-03 complete z i excellent
Or do a join in tidyverse
library(tidyverse)
df %>%
unite(newcol, !!! rlang::syms(names(.)[4:6]), sep="") %>%
filter(str_detect(newcol, '^complete')) %>%
transmute(application_id, user_id, final_status = nm1[newcol]) %>%
right_join(df)
Here is one option by creating a named
vector first
library(data.table)
nm1 <- setNames(c('good', 'great', 'excellent'),
c('completezc', 'completezf', 'completezi'))
nm2 <- do.call(paste0, df[4:6])
setDT(df)[, final_status := nm1[nm2]][,
final_status := final_status[complete.cases(final_status)],
.(application_id, user_id)]
df
# application_id user_id date application_status user_status_1 user_status_2 final_status
#1: 1 123 2018-01-01 incomplete x a good
#2: 1 123 2018-01-02 details_verified y b good
#3: 1 123 2018-01-03 complete z c good
#4: 2 456 2018-01-01 incomplete x d great
#5: 2 456 2018-01-02 details_verified y e great
#6: 2 456 2018-01-03 complete z f great
#7: 3 789 2018-01-01 incomplete x g excellent
#8: 3 789 2018-01-02 details_verified y h excellent
#9: 3 789 2018-01-03 complete z i excellent
Or do a join in tidyverse
library(tidyverse)
df %>%
unite(newcol, !!! rlang::syms(names(.)[4:6]), sep="") %>%
filter(str_detect(newcol, '^complete')) %>%
transmute(application_id, user_id, final_status = nm1[newcol]) %>%
right_join(df)
edited Nov 22 at 21:30
answered Nov 22 at 21:06
akrun
396k13187260
396k13187260
add a comment |
add a comment |
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53437610%2fapply-same-string-status-to-all-rows-with-similar-application-id-and-user-id%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown