'numpy.ndarray' object is not callable error with optimize.minimize












2














I want to fit a set of data with a simple sin^2 function and want to determine its minima based on the fitted parameters.



Here's my code:



import numpy as np
import matplotlib.pyplot as plt
from scipy import optimize

data = np.loadtxt('data.txt', usecols=(0,1))
x = data[:,0]*np.pi/180
y = data[:,1]

plt.scatter(x, y, c='red')

def sine(t,a,b,c):
return a*(np.sin(b*(t-c)))**2

params, cov = optimize.curve_fit(sine, x, y, p0=[9500, 0.5, 0])
print(params)

t = np.linspace(0, 2*np.pi/3, 120)
plt.plot(t, sine(t, *params), 'black')

plt.show()

optimize.minimize(sine(t, *params), x0=0)


Everything is fine except for the minimize call as I get the following error (with a full traceback):



TypeError                                 Traceback (most recent call last)
~DocumentsCNRCalibrazione_lamine_20181112Fit.py in <module>()
23 plt.show()
24
---> 25 optimize.minimize(sine(t, *params), x0=0)

~Anaconda3libsite-packagesscipyoptimize_minimize.py in minimize(fun, x0, args, method, jac, hess, hessp, bounds, constraints, tol, callback, options)
442 return _minimize_cg(fun, x0, args, jac, callback, **options)
443 elif meth == 'bfgs':
--> 444 return _minimize_bfgs(fun, x0, args, jac, callback, **options)
445 elif meth == 'newton-cg':
446 return _minimize_newtoncg(fun, x0, args, jac, hess, hessp, callback,

~Anaconda3libsite-packagesscipyoptimizeoptimize.py in _minimize_bfgs(fun, x0, args, jac, callback, gtol, norm, eps, maxiter, disp, return_all, **unknown_options)
911 else:
912 grad_calls, myfprime = wrap_function(fprime, args)
--> 913 gfk = myfprime(x0)
914 k = 0
915 N = len(x0)

~Anaconda3libsite-packagesscipyoptimizeoptimize.py in function_wrapper(*wrapper_args)
290 def function_wrapper(*wrapper_args):
291 ncalls[0] += 1
--> 292 return function(*(wrapper_args + args))
293
294 return ncalls, function_wrapper

~Anaconda3libsite-packagesscipyoptimizeoptimize.py in approx_fprime(xk, f, epsilon, *args)
686
687 """
--> 688 return _approx_fprime_helper(xk, f, epsilon, args=args)
689
690

~Anaconda3libsite-packagesscipyoptimizeoptimize.py in _approx_fprime_helper(xk, f, epsilon, args, f0)
620 """
621 if f0 is None:
--> 622 f0 = f(*((xk,) + args))
623 grad = numpy.zeros((len(xk),), float)
624 ei = numpy.zeros((len(xk),), float)

~Anaconda3libsite-packagesscipyoptimizeoptimize.py in function_wrapper(*wrapper_args)
290 def function_wrapper(*wrapper_args):
291 ncalls[0] += 1
--> 292 return function(*(wrapper_args + args))
293
294 return ncalls, function_wrapper

TypeError: 'numpy.ndarray' object is not callable.


I'm missing something but I don't know what.





I'm adding the data file to make this program run, as suggested



0   405
5 20
10 350
15 1380
20 2900
25 4750
30 6450
35 8100
40 9100
45 9800
50 10100
55 10250
60 9400
65 8400
70 6430
75 4900
80 3030
85 1500
90 400
95 17
100 410
105 1550
110 3100
115 4850
120 6780









share|improve this question
























  • I guess you just need x0=[0] or something like this (depending on how many variables you use). Just make sure to provide a list of same length as the number of variables.
    – Cleb
    Nov 23 at 11:06










  • I already tried to use x0=[0] but i get the same error.
    – R. Panico
    Nov 23 at 11:32










  • Ok, could you provide some data then which reproduce the error?! That makes it easier to help.
    – Cleb
    Nov 23 at 11:52










  • Could you explain what exactly you would like to achieve by this minimize call? You already fitted the parameters using curve_fit.
    – Cleb
    Nov 23 at 12:39






  • 1




    I want to find the values of the angles which minimize my function and optimize.minimize(sine, x0=[0], args=(params[0], params[1], params[2])) is apparently working fine. Thank you!
    – R. Panico
    Nov 23 at 12:56
















2














I want to fit a set of data with a simple sin^2 function and want to determine its minima based on the fitted parameters.



Here's my code:



import numpy as np
import matplotlib.pyplot as plt
from scipy import optimize

data = np.loadtxt('data.txt', usecols=(0,1))
x = data[:,0]*np.pi/180
y = data[:,1]

plt.scatter(x, y, c='red')

def sine(t,a,b,c):
return a*(np.sin(b*(t-c)))**2

params, cov = optimize.curve_fit(sine, x, y, p0=[9500, 0.5, 0])
print(params)

t = np.linspace(0, 2*np.pi/3, 120)
plt.plot(t, sine(t, *params), 'black')

plt.show()

optimize.minimize(sine(t, *params), x0=0)


Everything is fine except for the minimize call as I get the following error (with a full traceback):



TypeError                                 Traceback (most recent call last)
~DocumentsCNRCalibrazione_lamine_20181112Fit.py in <module>()
23 plt.show()
24
---> 25 optimize.minimize(sine(t, *params), x0=0)

~Anaconda3libsite-packagesscipyoptimize_minimize.py in minimize(fun, x0, args, method, jac, hess, hessp, bounds, constraints, tol, callback, options)
442 return _minimize_cg(fun, x0, args, jac, callback, **options)
443 elif meth == 'bfgs':
--> 444 return _minimize_bfgs(fun, x0, args, jac, callback, **options)
445 elif meth == 'newton-cg':
446 return _minimize_newtoncg(fun, x0, args, jac, hess, hessp, callback,

~Anaconda3libsite-packagesscipyoptimizeoptimize.py in _minimize_bfgs(fun, x0, args, jac, callback, gtol, norm, eps, maxiter, disp, return_all, **unknown_options)
911 else:
912 grad_calls, myfprime = wrap_function(fprime, args)
--> 913 gfk = myfprime(x0)
914 k = 0
915 N = len(x0)

~Anaconda3libsite-packagesscipyoptimizeoptimize.py in function_wrapper(*wrapper_args)
290 def function_wrapper(*wrapper_args):
291 ncalls[0] += 1
--> 292 return function(*(wrapper_args + args))
293
294 return ncalls, function_wrapper

~Anaconda3libsite-packagesscipyoptimizeoptimize.py in approx_fprime(xk, f, epsilon, *args)
686
687 """
--> 688 return _approx_fprime_helper(xk, f, epsilon, args=args)
689
690

~Anaconda3libsite-packagesscipyoptimizeoptimize.py in _approx_fprime_helper(xk, f, epsilon, args, f0)
620 """
621 if f0 is None:
--> 622 f0 = f(*((xk,) + args))
623 grad = numpy.zeros((len(xk),), float)
624 ei = numpy.zeros((len(xk),), float)

~Anaconda3libsite-packagesscipyoptimizeoptimize.py in function_wrapper(*wrapper_args)
290 def function_wrapper(*wrapper_args):
291 ncalls[0] += 1
--> 292 return function(*(wrapper_args + args))
293
294 return ncalls, function_wrapper

TypeError: 'numpy.ndarray' object is not callable.


I'm missing something but I don't know what.





I'm adding the data file to make this program run, as suggested



0   405
5 20
10 350
15 1380
20 2900
25 4750
30 6450
35 8100
40 9100
45 9800
50 10100
55 10250
60 9400
65 8400
70 6430
75 4900
80 3030
85 1500
90 400
95 17
100 410
105 1550
110 3100
115 4850
120 6780









share|improve this question
























  • I guess you just need x0=[0] or something like this (depending on how many variables you use). Just make sure to provide a list of same length as the number of variables.
    – Cleb
    Nov 23 at 11:06










  • I already tried to use x0=[0] but i get the same error.
    – R. Panico
    Nov 23 at 11:32










  • Ok, could you provide some data then which reproduce the error?! That makes it easier to help.
    – Cleb
    Nov 23 at 11:52










  • Could you explain what exactly you would like to achieve by this minimize call? You already fitted the parameters using curve_fit.
    – Cleb
    Nov 23 at 12:39






  • 1




    I want to find the values of the angles which minimize my function and optimize.minimize(sine, x0=[0], args=(params[0], params[1], params[2])) is apparently working fine. Thank you!
    – R. Panico
    Nov 23 at 12:56














2












2








2







I want to fit a set of data with a simple sin^2 function and want to determine its minima based on the fitted parameters.



Here's my code:



import numpy as np
import matplotlib.pyplot as plt
from scipy import optimize

data = np.loadtxt('data.txt', usecols=(0,1))
x = data[:,0]*np.pi/180
y = data[:,1]

plt.scatter(x, y, c='red')

def sine(t,a,b,c):
return a*(np.sin(b*(t-c)))**2

params, cov = optimize.curve_fit(sine, x, y, p0=[9500, 0.5, 0])
print(params)

t = np.linspace(0, 2*np.pi/3, 120)
plt.plot(t, sine(t, *params), 'black')

plt.show()

optimize.minimize(sine(t, *params), x0=0)


Everything is fine except for the minimize call as I get the following error (with a full traceback):



TypeError                                 Traceback (most recent call last)
~DocumentsCNRCalibrazione_lamine_20181112Fit.py in <module>()
23 plt.show()
24
---> 25 optimize.minimize(sine(t, *params), x0=0)

~Anaconda3libsite-packagesscipyoptimize_minimize.py in minimize(fun, x0, args, method, jac, hess, hessp, bounds, constraints, tol, callback, options)
442 return _minimize_cg(fun, x0, args, jac, callback, **options)
443 elif meth == 'bfgs':
--> 444 return _minimize_bfgs(fun, x0, args, jac, callback, **options)
445 elif meth == 'newton-cg':
446 return _minimize_newtoncg(fun, x0, args, jac, hess, hessp, callback,

~Anaconda3libsite-packagesscipyoptimizeoptimize.py in _minimize_bfgs(fun, x0, args, jac, callback, gtol, norm, eps, maxiter, disp, return_all, **unknown_options)
911 else:
912 grad_calls, myfprime = wrap_function(fprime, args)
--> 913 gfk = myfprime(x0)
914 k = 0
915 N = len(x0)

~Anaconda3libsite-packagesscipyoptimizeoptimize.py in function_wrapper(*wrapper_args)
290 def function_wrapper(*wrapper_args):
291 ncalls[0] += 1
--> 292 return function(*(wrapper_args + args))
293
294 return ncalls, function_wrapper

~Anaconda3libsite-packagesscipyoptimizeoptimize.py in approx_fprime(xk, f, epsilon, *args)
686
687 """
--> 688 return _approx_fprime_helper(xk, f, epsilon, args=args)
689
690

~Anaconda3libsite-packagesscipyoptimizeoptimize.py in _approx_fprime_helper(xk, f, epsilon, args, f0)
620 """
621 if f0 is None:
--> 622 f0 = f(*((xk,) + args))
623 grad = numpy.zeros((len(xk),), float)
624 ei = numpy.zeros((len(xk),), float)

~Anaconda3libsite-packagesscipyoptimizeoptimize.py in function_wrapper(*wrapper_args)
290 def function_wrapper(*wrapper_args):
291 ncalls[0] += 1
--> 292 return function(*(wrapper_args + args))
293
294 return ncalls, function_wrapper

TypeError: 'numpy.ndarray' object is not callable.


I'm missing something but I don't know what.





I'm adding the data file to make this program run, as suggested



0   405
5 20
10 350
15 1380
20 2900
25 4750
30 6450
35 8100
40 9100
45 9800
50 10100
55 10250
60 9400
65 8400
70 6430
75 4900
80 3030
85 1500
90 400
95 17
100 410
105 1550
110 3100
115 4850
120 6780









share|improve this question















I want to fit a set of data with a simple sin^2 function and want to determine its minima based on the fitted parameters.



Here's my code:



import numpy as np
import matplotlib.pyplot as plt
from scipy import optimize

data = np.loadtxt('data.txt', usecols=(0,1))
x = data[:,0]*np.pi/180
y = data[:,1]

plt.scatter(x, y, c='red')

def sine(t,a,b,c):
return a*(np.sin(b*(t-c)))**2

params, cov = optimize.curve_fit(sine, x, y, p0=[9500, 0.5, 0])
print(params)

t = np.linspace(0, 2*np.pi/3, 120)
plt.plot(t, sine(t, *params), 'black')

plt.show()

optimize.minimize(sine(t, *params), x0=0)


Everything is fine except for the minimize call as I get the following error (with a full traceback):



TypeError                                 Traceback (most recent call last)
~DocumentsCNRCalibrazione_lamine_20181112Fit.py in <module>()
23 plt.show()
24
---> 25 optimize.minimize(sine(t, *params), x0=0)

~Anaconda3libsite-packagesscipyoptimize_minimize.py in minimize(fun, x0, args, method, jac, hess, hessp, bounds, constraints, tol, callback, options)
442 return _minimize_cg(fun, x0, args, jac, callback, **options)
443 elif meth == 'bfgs':
--> 444 return _minimize_bfgs(fun, x0, args, jac, callback, **options)
445 elif meth == 'newton-cg':
446 return _minimize_newtoncg(fun, x0, args, jac, hess, hessp, callback,

~Anaconda3libsite-packagesscipyoptimizeoptimize.py in _minimize_bfgs(fun, x0, args, jac, callback, gtol, norm, eps, maxiter, disp, return_all, **unknown_options)
911 else:
912 grad_calls, myfprime = wrap_function(fprime, args)
--> 913 gfk = myfprime(x0)
914 k = 0
915 N = len(x0)

~Anaconda3libsite-packagesscipyoptimizeoptimize.py in function_wrapper(*wrapper_args)
290 def function_wrapper(*wrapper_args):
291 ncalls[0] += 1
--> 292 return function(*(wrapper_args + args))
293
294 return ncalls, function_wrapper

~Anaconda3libsite-packagesscipyoptimizeoptimize.py in approx_fprime(xk, f, epsilon, *args)
686
687 """
--> 688 return _approx_fprime_helper(xk, f, epsilon, args=args)
689
690

~Anaconda3libsite-packagesscipyoptimizeoptimize.py in _approx_fprime_helper(xk, f, epsilon, args, f0)
620 """
621 if f0 is None:
--> 622 f0 = f(*((xk,) + args))
623 grad = numpy.zeros((len(xk),), float)
624 ei = numpy.zeros((len(xk),), float)

~Anaconda3libsite-packagesscipyoptimizeoptimize.py in function_wrapper(*wrapper_args)
290 def function_wrapper(*wrapper_args):
291 ncalls[0] += 1
--> 292 return function(*(wrapper_args + args))
293
294 return ncalls, function_wrapper

TypeError: 'numpy.ndarray' object is not callable.


I'm missing something but I don't know what.





I'm adding the data file to make this program run, as suggested



0   405
5 20
10 350
15 1380
20 2900
25 4750
30 6450
35 8100
40 9100
45 9800
50 10100
55 10250
60 9400
65 8400
70 6430
75 4900
80 3030
85 1500
90 400
95 17
100 410
105 1550
110 3100
115 4850
120 6780






python python-3.x numpy scipy minimize






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited Nov 23 at 13:13









Cleb

10.3k115278




10.3k115278










asked Nov 23 at 10:09









R. Panico

135




135












  • I guess you just need x0=[0] or something like this (depending on how many variables you use). Just make sure to provide a list of same length as the number of variables.
    – Cleb
    Nov 23 at 11:06










  • I already tried to use x0=[0] but i get the same error.
    – R. Panico
    Nov 23 at 11:32










  • Ok, could you provide some data then which reproduce the error?! That makes it easier to help.
    – Cleb
    Nov 23 at 11:52










  • Could you explain what exactly you would like to achieve by this minimize call? You already fitted the parameters using curve_fit.
    – Cleb
    Nov 23 at 12:39






  • 1




    I want to find the values of the angles which minimize my function and optimize.minimize(sine, x0=[0], args=(params[0], params[1], params[2])) is apparently working fine. Thank you!
    – R. Panico
    Nov 23 at 12:56


















  • I guess you just need x0=[0] or something like this (depending on how many variables you use). Just make sure to provide a list of same length as the number of variables.
    – Cleb
    Nov 23 at 11:06










  • I already tried to use x0=[0] but i get the same error.
    – R. Panico
    Nov 23 at 11:32










  • Ok, could you provide some data then which reproduce the error?! That makes it easier to help.
    – Cleb
    Nov 23 at 11:52










  • Could you explain what exactly you would like to achieve by this minimize call? You already fitted the parameters using curve_fit.
    – Cleb
    Nov 23 at 12:39






  • 1




    I want to find the values of the angles which minimize my function and optimize.minimize(sine, x0=[0], args=(params[0], params[1], params[2])) is apparently working fine. Thank you!
    – R. Panico
    Nov 23 at 12:56
















I guess you just need x0=[0] or something like this (depending on how many variables you use). Just make sure to provide a list of same length as the number of variables.
– Cleb
Nov 23 at 11:06




I guess you just need x0=[0] or something like this (depending on how many variables you use). Just make sure to provide a list of same length as the number of variables.
– Cleb
Nov 23 at 11:06












I already tried to use x0=[0] but i get the same error.
– R. Panico
Nov 23 at 11:32




I already tried to use x0=[0] but i get the same error.
– R. Panico
Nov 23 at 11:32












Ok, could you provide some data then which reproduce the error?! That makes it easier to help.
– Cleb
Nov 23 at 11:52




Ok, could you provide some data then which reproduce the error?! That makes it easier to help.
– Cleb
Nov 23 at 11:52












Could you explain what exactly you would like to achieve by this minimize call? You already fitted the parameters using curve_fit.
– Cleb
Nov 23 at 12:39




Could you explain what exactly you would like to achieve by this minimize call? You already fitted the parameters using curve_fit.
– Cleb
Nov 23 at 12:39




1




1




I want to find the values of the angles which minimize my function and optimize.minimize(sine, x0=[0], args=(params[0], params[1], params[2])) is apparently working fine. Thank you!
– R. Panico
Nov 23 at 12:56




I want to find the values of the angles which minimize my function and optimize.minimize(sine, x0=[0], args=(params[0], params[1], params[2])) is apparently working fine. Thank you!
– R. Panico
Nov 23 at 12:56












2 Answers
2






active

oldest

votes


















0














minimize expects a function as first argument, however, you currently pass



sine(t, *params)


which is a numpy array.



You can fix this and do:



print(optimize.minimize(sine, x0=[0], args=tuple(params)))


This will print



      fun: 2.4080485986582715e-12
hess_inv: array([[1.15258817e-05]])
jac: array([8.19961349e-09])
message: 'Optimization terminated successfully.'
nfev: 18
nit: 4
njev: 6
status: 0
success: True
x: array([0.09203053])





share|improve this answer





























    0














    In the documentation of scipy, optimize.minimize function takes ndarray or shape(n) as an input for x, not an integer. I think the error is raised from there because in their error trace



    --> 913     gfk = myfprime(x0)


    the error is raised form this function.



    Documentation link.






    share|improve this answer





















    • I verified that the input for x, is indeed an ndarray of shape(n,), so the problem is probably something else
      – R. Panico
      Nov 23 at 11:30











    Your Answer






    StackExchange.ifUsing("editor", function () {
    StackExchange.using("externalEditor", function () {
    StackExchange.using("snippets", function () {
    StackExchange.snippets.init();
    });
    });
    }, "code-snippets");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "1"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53444606%2fnumpy-ndarray-object-is-not-callable-error-with-optimize-minimize%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    0














    minimize expects a function as first argument, however, you currently pass



    sine(t, *params)


    which is a numpy array.



    You can fix this and do:



    print(optimize.minimize(sine, x0=[0], args=tuple(params)))


    This will print



          fun: 2.4080485986582715e-12
    hess_inv: array([[1.15258817e-05]])
    jac: array([8.19961349e-09])
    message: 'Optimization terminated successfully.'
    nfev: 18
    nit: 4
    njev: 6
    status: 0
    success: True
    x: array([0.09203053])





    share|improve this answer


























      0














      minimize expects a function as first argument, however, you currently pass



      sine(t, *params)


      which is a numpy array.



      You can fix this and do:



      print(optimize.minimize(sine, x0=[0], args=tuple(params)))


      This will print



            fun: 2.4080485986582715e-12
      hess_inv: array([[1.15258817e-05]])
      jac: array([8.19961349e-09])
      message: 'Optimization terminated successfully.'
      nfev: 18
      nit: 4
      njev: 6
      status: 0
      success: True
      x: array([0.09203053])





      share|improve this answer
























        0












        0








        0






        minimize expects a function as first argument, however, you currently pass



        sine(t, *params)


        which is a numpy array.



        You can fix this and do:



        print(optimize.minimize(sine, x0=[0], args=tuple(params)))


        This will print



              fun: 2.4080485986582715e-12
        hess_inv: array([[1.15258817e-05]])
        jac: array([8.19961349e-09])
        message: 'Optimization terminated successfully.'
        nfev: 18
        nit: 4
        njev: 6
        status: 0
        success: True
        x: array([0.09203053])





        share|improve this answer












        minimize expects a function as first argument, however, you currently pass



        sine(t, *params)


        which is a numpy array.



        You can fix this and do:



        print(optimize.minimize(sine, x0=[0], args=tuple(params)))


        This will print



              fun: 2.4080485986582715e-12
        hess_inv: array([[1.15258817e-05]])
        jac: array([8.19961349e-09])
        message: 'Optimization terminated successfully.'
        nfev: 18
        nit: 4
        njev: 6
        status: 0
        success: True
        x: array([0.09203053])






        share|improve this answer












        share|improve this answer



        share|improve this answer










        answered Nov 23 at 13:01









        Cleb

        10.3k115278




        10.3k115278

























            0














            In the documentation of scipy, optimize.minimize function takes ndarray or shape(n) as an input for x, not an integer. I think the error is raised from there because in their error trace



            --> 913     gfk = myfprime(x0)


            the error is raised form this function.



            Documentation link.






            share|improve this answer





















            • I verified that the input for x, is indeed an ndarray of shape(n,), so the problem is probably something else
              – R. Panico
              Nov 23 at 11:30
















            0














            In the documentation of scipy, optimize.minimize function takes ndarray or shape(n) as an input for x, not an integer. I think the error is raised from there because in their error trace



            --> 913     gfk = myfprime(x0)


            the error is raised form this function.



            Documentation link.






            share|improve this answer





















            • I verified that the input for x, is indeed an ndarray of shape(n,), so the problem is probably something else
              – R. Panico
              Nov 23 at 11:30














            0












            0








            0






            In the documentation of scipy, optimize.minimize function takes ndarray or shape(n) as an input for x, not an integer. I think the error is raised from there because in their error trace



            --> 913     gfk = myfprime(x0)


            the error is raised form this function.



            Documentation link.






            share|improve this answer












            In the documentation of scipy, optimize.minimize function takes ndarray or shape(n) as an input for x, not an integer. I think the error is raised from there because in their error trace



            --> 913     gfk = myfprime(x0)


            the error is raised form this function.



            Documentation link.







            share|improve this answer












            share|improve this answer



            share|improve this answer










            answered Nov 23 at 10:27









            Rarblack

            2,7163925




            2,7163925












            • I verified that the input for x, is indeed an ndarray of shape(n,), so the problem is probably something else
              – R. Panico
              Nov 23 at 11:30


















            • I verified that the input for x, is indeed an ndarray of shape(n,), so the problem is probably something else
              – R. Panico
              Nov 23 at 11:30
















            I verified that the input for x, is indeed an ndarray of shape(n,), so the problem is probably something else
            – R. Panico
            Nov 23 at 11:30




            I verified that the input for x, is indeed an ndarray of shape(n,), so the problem is probably something else
            – R. Panico
            Nov 23 at 11:30


















            draft saved

            draft discarded




















































            Thanks for contributing an answer to Stack Overflow!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            To learn more, see our tips on writing great answers.





            Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


            Please pay close attention to the following guidance:


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53444606%2fnumpy-ndarray-object-is-not-callable-error-with-optimize-minimize%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            A CLEAN and SIMPLE way to add appendices to Table of Contents and bookmarks

            Calculate evaluation metrics using cross_val_predict sklearn

            Insert data from modal to MySQL (multiple modal on website)