Layer output of Keras pre-trained VGG19 model produces different outputs for same input
I'm extracting intermediate layer outputs from pretrained VGG19 ConvNet for a given image. I expect that if I give the same image twice, I should get the same output. But, I'm not getting the same output. Why is this happening and how to fix this?
Additional Details:
I'm following this paper. They use a VGG19 ConvNet and extract the features from some intermediate layer (VGG22 means 2nd layer before 2nd convolution) for Super-Resolved Image and Ground-Truth Image. Then they calculate the mean squared error between these 2 feature sets and use it as a loss parameter. Now, my expectation is that if I give Ground Truth Image only twice, the mean squared error should be zero. But it is not happening? I'm getting different feature values at different iteration, but with same image. Also I noticed that, when I run the program again afresh, I get the same set of values. Code below for reference:
import numpy
from keras import backend as K
from keras.applications.vgg19 import VGG19, preprocess_input
from keras.preprocessing.image import img_to_array, load_img
model = VGG19()
vgg22_layer_output = K.function([model.layers[0].input], [model.layers[5].output])
# image_matrix is a 224x224x3 matrix for an RGB-image.
hr_image_obj = load_img(hr_image_path)
hr_image_matrix = img_to_array(hr_image_obj)
cropped_hr_image = hr_image_matrix[0:224, 0:224, :]
expanded_image = numpy.expand_dims(cropped_hr_image, axis=0)
preprocessed_image = preprocess_input(expanded_image)
features1 = vgg22_layer_output ([preprocessed_image])[0]
features2 = vgg22_layer_output ([preprocessed_image])[0]
Here, my expectation is that features1 = features2, which isn't
Results:
features1:
array([[[[2.15184002e+01, 1.81470230e+02, 0.00000000e+00, ...,
0.00000000e+00, 1.98130661e+02, 0.00000000e+00],
[2.27056488e+02, 0.00000000e+00, 0.00000000e+00, ...,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00],
[1.54923904e+02, 0.00000000e+00, 0.00000000e+00, ...,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00],
...,
[2.29082489e+02, 2.58140778e+02, 0.00000000e+00, ...,
3.18900665e+02, 0.00000000e+00, 0.00000000e+00],
[1.58660873e+02, 1.24280603e+03, 0.00000000e+00, ...,
2.76672821e+02, 0.00000000e+00, 0.00000000e+00],
[2.66982513e+02, 4.27661194e+02, 0.00000000e+00, ...,
4.57434418e+02, 0.00000000e+00, 0.00000000e+00]],
[[0.00000000e+00, 0.00000000e+00, 1.71959274e+02, ...,
0.00000000e+00, 1.25863232e+03, 0.00000000e+00],
[0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ...,
3.51934662e+02, 4.45714081e+02, 0.00000000e+00],
[0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ...,
3.73108368e+02, 7.51479004e+02, 0.00000000e+00],
...,
[0.00000000e+00, 3.06031370e+00, 0.00000000e+00, ...,
3.09630096e+02, 2.15055069e+02, 1.91232590e+02],
[0.00000000e+00, 1.33151245e+03, 0.00000000e+00, ...,
2.78728699e+02, 2.91452618e+01, 4.12124878e+02],
[1.13750778e+02, 3.04266022e+02, 0.00000000e+00, ...,
4.93073273e+02, 0.00000000e+00, 1.25463562e+02]],
[[0.00000000e+00, 2.36886551e+02, 1.87017990e+02, ...,
0.00000000e+00, 5.56484497e+02, 0.00000000e+00],
[0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ...,
1.29744125e+02, 5.47009888e+02, 0.00000000e+00],
[2.10977726e+01, 0.00000000e+00, 5.83388855e+02, ...,
3.78568268e+02, 1.76858459e+03, 0.00000000e+00],
...,
[0.00000000e+00, 2.26063950e+02, 0.00000000e+00, ...,
1.74201874e+02, 1.10421577e+02, 2.92625153e+02],
[0.00000000e+00, 1.49054639e+03, 1.73763367e+02, ...,
3.43214760e+01, 1.41045761e+02, 5.26752502e+02],
[1.79130356e+02, 4.18553101e+02, 1.12429085e+02, ...,
2.08473053e+02, 0.00000000e+00, 1.46159897e+02]],
...,
[[0.00000000e+00, 0.00000000e+00, 6.14884460e+02, ...,
4.48683044e+02, 2.60172217e+03, 0.00000000e+00],
[0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ...,
1.05306360e+03, 5.45696045e+02, 0.00000000e+00],
[5.33453941e+01, 0.00000000e+00, 6.09368164e+02, ...,
7.00016541e+02, 0.00000000e+00, 0.00000000e+00],
...,
[0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ...,
2.49793106e+02, 0.00000000e+00, 0.00000000e+00],
[0.00000000e+00, 0.00000000e+00, 3.44778638e+03, ...,
1.97339310e+02, 0.00000000e+00, 0.00000000e+00],
[1.27069351e+02, 0.00000000e+00, 0.00000000e+00, ...,
1.85339737e+02, 0.00000000e+00, 0.00000000e+00]],
[[0.00000000e+00, 0.00000000e+00, 4.90521271e+02, ...,
4.68645844e+02, 3.26934399e+03, 0.00000000e+00],
[2.26508102e+01, 0.00000000e+00, 7.08834915e+01, ...,
1.11953967e+03, 1.10590857e+03, 0.00000000e+00],
[1.11061287e+02, 0.00000000e+00, 8.05527405e+02, ...,
8.03228516e+02, 2.84233459e+02, 0.00000000e+00],
...,
[0.00000000e+00, 0.00000000e+00, 1.10313757e+03, ...,
5.78258667e+02, 1.47924316e+03, 0.00000000e+00],
[0.00000000e+00, 0.00000000e+00, 1.59146082e+03, ...,
7.10267578e+02, 6.43671143e+02, 0.00000000e+00],
[3.27744568e+02, 0.00000000e+00, 0.00000000e+00, ...,
4.53388458e+02, 0.00000000e+00, 0.00000000e+00]],
[[0.00000000e+00, 0.00000000e+00, 1.12306348e+03, ...,
1.63393646e+02, 3.52517969e+03, 0.00000000e+00],
[0.00000000e+00, 0.00000000e+00, 6.36935806e+01, ...,
4.52494598e+02, 1.94326257e+03, 0.00000000e+00],
[0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ...,
2.83666046e+02, 4.89346985e+02, 0.00000000e+00],
...,
[0.00000000e+00, 0.00000000e+00, 1.02328314e+03, ...,
2.65413391e+02, 2.64639990e+03, 0.00000000e+00],
[0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ...,
4.30894745e+02, 1.33343530e+03, 0.00000000e+00],
[7.57115707e+01, 0.00000000e+00, 0.00000000e+00, ...,
2.14354630e+02, 0.00000000e+00, 0.00000000e+00]]]],
dtype=float32)
features2:
array([[[[2.44103737e+01, 3.35516052e+02, 0.00000000e+00, ...,
0.00000000e+00, 2.06830643e+02, 0.00000000e+00],
[4.71717712e+02, 0.00000000e+00, 0.00000000e+00, ...,
2.63770996e+02, 0.00000000e+00, 0.00000000e+00],
[3.93549591e+02, 0.00000000e+00, 0.00000000e+00, ...,
1.77212814e+02, 0.00000000e+00, 0.00000000e+00],
...,
[5.33919487e+01, 0.00000000e+00, 0.00000000e+00, ...,
1.85940536e+02, 0.00000000e+00, 0.00000000e+00],
[0.00000000e+00, 2.96363708e+02, 0.00000000e+00, ...,
1.09057648e+02, 0.00000000e+00, 0.00000000e+00],
[2.27105503e+01, 8.29022141e+01, 0.00000000e+00, ...,
1.38949188e+02, 0.00000000e+00, 0.00000000e+00]],
[[0.00000000e+00, 0.00000000e+00, 2.47062546e+02, ...,
0.00000000e+00, 1.66465466e+03, 0.00000000e+00],
[0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ...,
6.74320862e+02, 4.15592712e+02, 0.00000000e+00],
[0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ...,
8.65957825e+02, 8.59399170e+02, 0.00000000e+00],
...,
[0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ...,
1.66129944e+02, 0.00000000e+00, 0.00000000e+00],
[0.00000000e+00, 2.76259674e+02, 0.00000000e+00, ...,
8.00474930e+01, 0.00000000e+00, 1.08291901e+02],
[0.00000000e+00, 2.20606117e+01, 0.00000000e+00, ...,
1.28005768e+02, 0.00000000e+00, 3.49725151e+01]],
[[0.00000000e+00, 2.14503006e+02, 8.82690811e+01, ...,
0.00000000e+00, 5.60968628e+02, 0.00000000e+00],
[3.28399010e+01, 0.00000000e+00, 0.00000000e+00, ...,
3.34213745e+02, 2.90819824e+02, 0.00000000e+00],
[8.66472626e+01, 0.00000000e+00, 1.10250635e+03, ...,
6.37486572e+02, 1.67822144e+03, 0.00000000e+00],
...,
[0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ...,
5.90463066e+01, 0.00000000e+00, 9.77452278e+00],
[0.00000000e+00, 3.39350586e+02, 4.62688398e+00, ...,
1.32679808e+00, 0.00000000e+00, 1.65987671e+02],
[2.47563610e+01, 7.48269196e+01, 1.33592939e+01, ...,
6.36582108e+01, 0.00000000e+00, 5.70933228e+01]],
...,
[[0.00000000e+00, 0.00000000e+00, 6.27470215e+02, ...,
2.55267532e+02, 2.27369629e+03, 0.00000000e+00],
[1.52827530e+02, 0.00000000e+00, 0.00000000e+00, ...,
1.20087329e+03, 0.00000000e+00, 0.00000000e+00],
[1.33066071e+02, 0.00000000e+00, 5.95311890e+02, ...,
7.66817871e+02, 0.00000000e+00, 0.00000000e+00],
...,
[0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ...,
4.81101898e+02, 0.00000000e+00, 0.00000000e+00],
[0.00000000e+00, 0.00000000e+00, 3.99484155e+03, ...,
5.40802429e+02, 0.00000000e+00, 0.00000000e+00],
[1.93494095e+02, 0.00000000e+00, 1.16481377e+02, ...,
3.75594208e+02, 0.00000000e+00, 0.00000000e+00]],
[[0.00000000e+00, 0.00000000e+00, 5.08203369e+02, ...,
3.65947357e+02, 2.66369580e+03, 0.00000000e+00],
[2.29821182e+02, 0.00000000e+00, 3.83578918e+02, ...,
1.37410413e+03, 1.28806320e+02, 0.00000000e+00],
[1.89210968e+02, 0.00000000e+00, 9.40994324e+02, ...,
8.16117615e+02, 0.00000000e+00, 0.00000000e+00],
...,
[0.00000000e+00, 0.00000000e+00, 1.34960962e+03, ...,
1.03916003e+03, 6.58975891e+02, 0.00000000e+00],
[6.77491531e+01, 0.00000000e+00, 2.07465186e+03, ...,
1.13461414e+03, 0.00000000e+00, 0.00000000e+00],
[2.96653259e+02, 0.00000000e+00, 0.00000000e+00, ...,
6.33178528e+02, 0.00000000e+00, 0.00000000e+00]],
[[0.00000000e+00, 0.00000000e+00, 1.20268628e+03, ...,
6.86023560e+01, 2.83282886e+03, 0.00000000e+00],
[0.00000000e+00, 0.00000000e+00, 3.50556335e+02, ...,
8.04942566e+02, 7.94925537e+02, 0.00000000e+00],
[0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ...,
3.74615967e+02, 0.00000000e+00, 0.00000000e+00],
...,
[0.00000000e+00, 0.00000000e+00, 1.17975757e+03, ...,
6.35223450e+02, 1.62643567e+03, 0.00000000e+00],
[0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ...,
9.20189697e+02, 4.05781097e+02, 0.00000000e+00],
[1.26037315e+02, 0.00000000e+00, 0.00000000e+00, ...,
4.17285614e+02, 0.00000000e+00, 0.00000000e+00]]]],
dtype=float32)
The image is taken from here. Path: v1.3/Code/Ours/Images_GroundTruth/BSD200/335094.png
Edit 1: Added additional code and results
python tensorflow image-processing keras vgg-net
add a comment |
I'm extracting intermediate layer outputs from pretrained VGG19 ConvNet for a given image. I expect that if I give the same image twice, I should get the same output. But, I'm not getting the same output. Why is this happening and how to fix this?
Additional Details:
I'm following this paper. They use a VGG19 ConvNet and extract the features from some intermediate layer (VGG22 means 2nd layer before 2nd convolution) for Super-Resolved Image and Ground-Truth Image. Then they calculate the mean squared error between these 2 feature sets and use it as a loss parameter. Now, my expectation is that if I give Ground Truth Image only twice, the mean squared error should be zero. But it is not happening? I'm getting different feature values at different iteration, but with same image. Also I noticed that, when I run the program again afresh, I get the same set of values. Code below for reference:
import numpy
from keras import backend as K
from keras.applications.vgg19 import VGG19, preprocess_input
from keras.preprocessing.image import img_to_array, load_img
model = VGG19()
vgg22_layer_output = K.function([model.layers[0].input], [model.layers[5].output])
# image_matrix is a 224x224x3 matrix for an RGB-image.
hr_image_obj = load_img(hr_image_path)
hr_image_matrix = img_to_array(hr_image_obj)
cropped_hr_image = hr_image_matrix[0:224, 0:224, :]
expanded_image = numpy.expand_dims(cropped_hr_image, axis=0)
preprocessed_image = preprocess_input(expanded_image)
features1 = vgg22_layer_output ([preprocessed_image])[0]
features2 = vgg22_layer_output ([preprocessed_image])[0]
Here, my expectation is that features1 = features2, which isn't
Results:
features1:
array([[[[2.15184002e+01, 1.81470230e+02, 0.00000000e+00, ...,
0.00000000e+00, 1.98130661e+02, 0.00000000e+00],
[2.27056488e+02, 0.00000000e+00, 0.00000000e+00, ...,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00],
[1.54923904e+02, 0.00000000e+00, 0.00000000e+00, ...,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00],
...,
[2.29082489e+02, 2.58140778e+02, 0.00000000e+00, ...,
3.18900665e+02, 0.00000000e+00, 0.00000000e+00],
[1.58660873e+02, 1.24280603e+03, 0.00000000e+00, ...,
2.76672821e+02, 0.00000000e+00, 0.00000000e+00],
[2.66982513e+02, 4.27661194e+02, 0.00000000e+00, ...,
4.57434418e+02, 0.00000000e+00, 0.00000000e+00]],
[[0.00000000e+00, 0.00000000e+00, 1.71959274e+02, ...,
0.00000000e+00, 1.25863232e+03, 0.00000000e+00],
[0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ...,
3.51934662e+02, 4.45714081e+02, 0.00000000e+00],
[0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ...,
3.73108368e+02, 7.51479004e+02, 0.00000000e+00],
...,
[0.00000000e+00, 3.06031370e+00, 0.00000000e+00, ...,
3.09630096e+02, 2.15055069e+02, 1.91232590e+02],
[0.00000000e+00, 1.33151245e+03, 0.00000000e+00, ...,
2.78728699e+02, 2.91452618e+01, 4.12124878e+02],
[1.13750778e+02, 3.04266022e+02, 0.00000000e+00, ...,
4.93073273e+02, 0.00000000e+00, 1.25463562e+02]],
[[0.00000000e+00, 2.36886551e+02, 1.87017990e+02, ...,
0.00000000e+00, 5.56484497e+02, 0.00000000e+00],
[0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ...,
1.29744125e+02, 5.47009888e+02, 0.00000000e+00],
[2.10977726e+01, 0.00000000e+00, 5.83388855e+02, ...,
3.78568268e+02, 1.76858459e+03, 0.00000000e+00],
...,
[0.00000000e+00, 2.26063950e+02, 0.00000000e+00, ...,
1.74201874e+02, 1.10421577e+02, 2.92625153e+02],
[0.00000000e+00, 1.49054639e+03, 1.73763367e+02, ...,
3.43214760e+01, 1.41045761e+02, 5.26752502e+02],
[1.79130356e+02, 4.18553101e+02, 1.12429085e+02, ...,
2.08473053e+02, 0.00000000e+00, 1.46159897e+02]],
...,
[[0.00000000e+00, 0.00000000e+00, 6.14884460e+02, ...,
4.48683044e+02, 2.60172217e+03, 0.00000000e+00],
[0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ...,
1.05306360e+03, 5.45696045e+02, 0.00000000e+00],
[5.33453941e+01, 0.00000000e+00, 6.09368164e+02, ...,
7.00016541e+02, 0.00000000e+00, 0.00000000e+00],
...,
[0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ...,
2.49793106e+02, 0.00000000e+00, 0.00000000e+00],
[0.00000000e+00, 0.00000000e+00, 3.44778638e+03, ...,
1.97339310e+02, 0.00000000e+00, 0.00000000e+00],
[1.27069351e+02, 0.00000000e+00, 0.00000000e+00, ...,
1.85339737e+02, 0.00000000e+00, 0.00000000e+00]],
[[0.00000000e+00, 0.00000000e+00, 4.90521271e+02, ...,
4.68645844e+02, 3.26934399e+03, 0.00000000e+00],
[2.26508102e+01, 0.00000000e+00, 7.08834915e+01, ...,
1.11953967e+03, 1.10590857e+03, 0.00000000e+00],
[1.11061287e+02, 0.00000000e+00, 8.05527405e+02, ...,
8.03228516e+02, 2.84233459e+02, 0.00000000e+00],
...,
[0.00000000e+00, 0.00000000e+00, 1.10313757e+03, ...,
5.78258667e+02, 1.47924316e+03, 0.00000000e+00],
[0.00000000e+00, 0.00000000e+00, 1.59146082e+03, ...,
7.10267578e+02, 6.43671143e+02, 0.00000000e+00],
[3.27744568e+02, 0.00000000e+00, 0.00000000e+00, ...,
4.53388458e+02, 0.00000000e+00, 0.00000000e+00]],
[[0.00000000e+00, 0.00000000e+00, 1.12306348e+03, ...,
1.63393646e+02, 3.52517969e+03, 0.00000000e+00],
[0.00000000e+00, 0.00000000e+00, 6.36935806e+01, ...,
4.52494598e+02, 1.94326257e+03, 0.00000000e+00],
[0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ...,
2.83666046e+02, 4.89346985e+02, 0.00000000e+00],
...,
[0.00000000e+00, 0.00000000e+00, 1.02328314e+03, ...,
2.65413391e+02, 2.64639990e+03, 0.00000000e+00],
[0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ...,
4.30894745e+02, 1.33343530e+03, 0.00000000e+00],
[7.57115707e+01, 0.00000000e+00, 0.00000000e+00, ...,
2.14354630e+02, 0.00000000e+00, 0.00000000e+00]]]],
dtype=float32)
features2:
array([[[[2.44103737e+01, 3.35516052e+02, 0.00000000e+00, ...,
0.00000000e+00, 2.06830643e+02, 0.00000000e+00],
[4.71717712e+02, 0.00000000e+00, 0.00000000e+00, ...,
2.63770996e+02, 0.00000000e+00, 0.00000000e+00],
[3.93549591e+02, 0.00000000e+00, 0.00000000e+00, ...,
1.77212814e+02, 0.00000000e+00, 0.00000000e+00],
...,
[5.33919487e+01, 0.00000000e+00, 0.00000000e+00, ...,
1.85940536e+02, 0.00000000e+00, 0.00000000e+00],
[0.00000000e+00, 2.96363708e+02, 0.00000000e+00, ...,
1.09057648e+02, 0.00000000e+00, 0.00000000e+00],
[2.27105503e+01, 8.29022141e+01, 0.00000000e+00, ...,
1.38949188e+02, 0.00000000e+00, 0.00000000e+00]],
[[0.00000000e+00, 0.00000000e+00, 2.47062546e+02, ...,
0.00000000e+00, 1.66465466e+03, 0.00000000e+00],
[0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ...,
6.74320862e+02, 4.15592712e+02, 0.00000000e+00],
[0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ...,
8.65957825e+02, 8.59399170e+02, 0.00000000e+00],
...,
[0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ...,
1.66129944e+02, 0.00000000e+00, 0.00000000e+00],
[0.00000000e+00, 2.76259674e+02, 0.00000000e+00, ...,
8.00474930e+01, 0.00000000e+00, 1.08291901e+02],
[0.00000000e+00, 2.20606117e+01, 0.00000000e+00, ...,
1.28005768e+02, 0.00000000e+00, 3.49725151e+01]],
[[0.00000000e+00, 2.14503006e+02, 8.82690811e+01, ...,
0.00000000e+00, 5.60968628e+02, 0.00000000e+00],
[3.28399010e+01, 0.00000000e+00, 0.00000000e+00, ...,
3.34213745e+02, 2.90819824e+02, 0.00000000e+00],
[8.66472626e+01, 0.00000000e+00, 1.10250635e+03, ...,
6.37486572e+02, 1.67822144e+03, 0.00000000e+00],
...,
[0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ...,
5.90463066e+01, 0.00000000e+00, 9.77452278e+00],
[0.00000000e+00, 3.39350586e+02, 4.62688398e+00, ...,
1.32679808e+00, 0.00000000e+00, 1.65987671e+02],
[2.47563610e+01, 7.48269196e+01, 1.33592939e+01, ...,
6.36582108e+01, 0.00000000e+00, 5.70933228e+01]],
...,
[[0.00000000e+00, 0.00000000e+00, 6.27470215e+02, ...,
2.55267532e+02, 2.27369629e+03, 0.00000000e+00],
[1.52827530e+02, 0.00000000e+00, 0.00000000e+00, ...,
1.20087329e+03, 0.00000000e+00, 0.00000000e+00],
[1.33066071e+02, 0.00000000e+00, 5.95311890e+02, ...,
7.66817871e+02, 0.00000000e+00, 0.00000000e+00],
...,
[0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ...,
4.81101898e+02, 0.00000000e+00, 0.00000000e+00],
[0.00000000e+00, 0.00000000e+00, 3.99484155e+03, ...,
5.40802429e+02, 0.00000000e+00, 0.00000000e+00],
[1.93494095e+02, 0.00000000e+00, 1.16481377e+02, ...,
3.75594208e+02, 0.00000000e+00, 0.00000000e+00]],
[[0.00000000e+00, 0.00000000e+00, 5.08203369e+02, ...,
3.65947357e+02, 2.66369580e+03, 0.00000000e+00],
[2.29821182e+02, 0.00000000e+00, 3.83578918e+02, ...,
1.37410413e+03, 1.28806320e+02, 0.00000000e+00],
[1.89210968e+02, 0.00000000e+00, 9.40994324e+02, ...,
8.16117615e+02, 0.00000000e+00, 0.00000000e+00],
...,
[0.00000000e+00, 0.00000000e+00, 1.34960962e+03, ...,
1.03916003e+03, 6.58975891e+02, 0.00000000e+00],
[6.77491531e+01, 0.00000000e+00, 2.07465186e+03, ...,
1.13461414e+03, 0.00000000e+00, 0.00000000e+00],
[2.96653259e+02, 0.00000000e+00, 0.00000000e+00, ...,
6.33178528e+02, 0.00000000e+00, 0.00000000e+00]],
[[0.00000000e+00, 0.00000000e+00, 1.20268628e+03, ...,
6.86023560e+01, 2.83282886e+03, 0.00000000e+00],
[0.00000000e+00, 0.00000000e+00, 3.50556335e+02, ...,
8.04942566e+02, 7.94925537e+02, 0.00000000e+00],
[0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ...,
3.74615967e+02, 0.00000000e+00, 0.00000000e+00],
...,
[0.00000000e+00, 0.00000000e+00, 1.17975757e+03, ...,
6.35223450e+02, 1.62643567e+03, 0.00000000e+00],
[0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ...,
9.20189697e+02, 4.05781097e+02, 0.00000000e+00],
[1.26037315e+02, 0.00000000e+00, 0.00000000e+00, ...,
4.17285614e+02, 0.00000000e+00, 0.00000000e+00]]]],
dtype=float32)
The image is taken from here. Path: v1.3/Code/Ours/Images_GroundTruth/BSD200/335094.png
Edit 1: Added additional code and results
python tensorflow image-processing keras vgg-net
The code you included doesn't show the problem, please add more detail and actual results you get.
– Matias Valdenegro
Nov 22 at 20:59
I've added more detail and results. Please let me know if you need more info and what exactly you want. Thanks!
– Nagabhushan S N
Nov 23 at 1:52
1
I have run the code you provided with that specific image and got equal features1 and features2 (numpy.array_equal(features1, features2)
wasTrue
). So, the problem probably lies somewhere else.
– Kilian Batzner
Nov 23 at 13:36
Oh! Might be then. Thanks for checking. Currently, I am using another method to get the features as given here: keras.io/getting-started/faq/… (1st method). It is giving same values. I'll investigate later what was going wrong. Thanks again!
– Nagabhushan S N
Nov 23 at 15:22
I have narrowed down the error. Thehr_image_matrix
i.e. the image read using keras'load_img
andimg_to_array
functions was somehow giving negative values for the image matrix. Very strange. So, I replaced that withcv2.imread(hr_image_path, cv2.IMREAD_COLOR)
and then its working as expected.
– Nagabhushan S N
Nov 23 at 16:28
add a comment |
I'm extracting intermediate layer outputs from pretrained VGG19 ConvNet for a given image. I expect that if I give the same image twice, I should get the same output. But, I'm not getting the same output. Why is this happening and how to fix this?
Additional Details:
I'm following this paper. They use a VGG19 ConvNet and extract the features from some intermediate layer (VGG22 means 2nd layer before 2nd convolution) for Super-Resolved Image and Ground-Truth Image. Then they calculate the mean squared error between these 2 feature sets and use it as a loss parameter. Now, my expectation is that if I give Ground Truth Image only twice, the mean squared error should be zero. But it is not happening? I'm getting different feature values at different iteration, but with same image. Also I noticed that, when I run the program again afresh, I get the same set of values. Code below for reference:
import numpy
from keras import backend as K
from keras.applications.vgg19 import VGG19, preprocess_input
from keras.preprocessing.image import img_to_array, load_img
model = VGG19()
vgg22_layer_output = K.function([model.layers[0].input], [model.layers[5].output])
# image_matrix is a 224x224x3 matrix for an RGB-image.
hr_image_obj = load_img(hr_image_path)
hr_image_matrix = img_to_array(hr_image_obj)
cropped_hr_image = hr_image_matrix[0:224, 0:224, :]
expanded_image = numpy.expand_dims(cropped_hr_image, axis=0)
preprocessed_image = preprocess_input(expanded_image)
features1 = vgg22_layer_output ([preprocessed_image])[0]
features2 = vgg22_layer_output ([preprocessed_image])[0]
Here, my expectation is that features1 = features2, which isn't
Results:
features1:
array([[[[2.15184002e+01, 1.81470230e+02, 0.00000000e+00, ...,
0.00000000e+00, 1.98130661e+02, 0.00000000e+00],
[2.27056488e+02, 0.00000000e+00, 0.00000000e+00, ...,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00],
[1.54923904e+02, 0.00000000e+00, 0.00000000e+00, ...,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00],
...,
[2.29082489e+02, 2.58140778e+02, 0.00000000e+00, ...,
3.18900665e+02, 0.00000000e+00, 0.00000000e+00],
[1.58660873e+02, 1.24280603e+03, 0.00000000e+00, ...,
2.76672821e+02, 0.00000000e+00, 0.00000000e+00],
[2.66982513e+02, 4.27661194e+02, 0.00000000e+00, ...,
4.57434418e+02, 0.00000000e+00, 0.00000000e+00]],
[[0.00000000e+00, 0.00000000e+00, 1.71959274e+02, ...,
0.00000000e+00, 1.25863232e+03, 0.00000000e+00],
[0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ...,
3.51934662e+02, 4.45714081e+02, 0.00000000e+00],
[0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ...,
3.73108368e+02, 7.51479004e+02, 0.00000000e+00],
...,
[0.00000000e+00, 3.06031370e+00, 0.00000000e+00, ...,
3.09630096e+02, 2.15055069e+02, 1.91232590e+02],
[0.00000000e+00, 1.33151245e+03, 0.00000000e+00, ...,
2.78728699e+02, 2.91452618e+01, 4.12124878e+02],
[1.13750778e+02, 3.04266022e+02, 0.00000000e+00, ...,
4.93073273e+02, 0.00000000e+00, 1.25463562e+02]],
[[0.00000000e+00, 2.36886551e+02, 1.87017990e+02, ...,
0.00000000e+00, 5.56484497e+02, 0.00000000e+00],
[0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ...,
1.29744125e+02, 5.47009888e+02, 0.00000000e+00],
[2.10977726e+01, 0.00000000e+00, 5.83388855e+02, ...,
3.78568268e+02, 1.76858459e+03, 0.00000000e+00],
...,
[0.00000000e+00, 2.26063950e+02, 0.00000000e+00, ...,
1.74201874e+02, 1.10421577e+02, 2.92625153e+02],
[0.00000000e+00, 1.49054639e+03, 1.73763367e+02, ...,
3.43214760e+01, 1.41045761e+02, 5.26752502e+02],
[1.79130356e+02, 4.18553101e+02, 1.12429085e+02, ...,
2.08473053e+02, 0.00000000e+00, 1.46159897e+02]],
...,
[[0.00000000e+00, 0.00000000e+00, 6.14884460e+02, ...,
4.48683044e+02, 2.60172217e+03, 0.00000000e+00],
[0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ...,
1.05306360e+03, 5.45696045e+02, 0.00000000e+00],
[5.33453941e+01, 0.00000000e+00, 6.09368164e+02, ...,
7.00016541e+02, 0.00000000e+00, 0.00000000e+00],
...,
[0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ...,
2.49793106e+02, 0.00000000e+00, 0.00000000e+00],
[0.00000000e+00, 0.00000000e+00, 3.44778638e+03, ...,
1.97339310e+02, 0.00000000e+00, 0.00000000e+00],
[1.27069351e+02, 0.00000000e+00, 0.00000000e+00, ...,
1.85339737e+02, 0.00000000e+00, 0.00000000e+00]],
[[0.00000000e+00, 0.00000000e+00, 4.90521271e+02, ...,
4.68645844e+02, 3.26934399e+03, 0.00000000e+00],
[2.26508102e+01, 0.00000000e+00, 7.08834915e+01, ...,
1.11953967e+03, 1.10590857e+03, 0.00000000e+00],
[1.11061287e+02, 0.00000000e+00, 8.05527405e+02, ...,
8.03228516e+02, 2.84233459e+02, 0.00000000e+00],
...,
[0.00000000e+00, 0.00000000e+00, 1.10313757e+03, ...,
5.78258667e+02, 1.47924316e+03, 0.00000000e+00],
[0.00000000e+00, 0.00000000e+00, 1.59146082e+03, ...,
7.10267578e+02, 6.43671143e+02, 0.00000000e+00],
[3.27744568e+02, 0.00000000e+00, 0.00000000e+00, ...,
4.53388458e+02, 0.00000000e+00, 0.00000000e+00]],
[[0.00000000e+00, 0.00000000e+00, 1.12306348e+03, ...,
1.63393646e+02, 3.52517969e+03, 0.00000000e+00],
[0.00000000e+00, 0.00000000e+00, 6.36935806e+01, ...,
4.52494598e+02, 1.94326257e+03, 0.00000000e+00],
[0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ...,
2.83666046e+02, 4.89346985e+02, 0.00000000e+00],
...,
[0.00000000e+00, 0.00000000e+00, 1.02328314e+03, ...,
2.65413391e+02, 2.64639990e+03, 0.00000000e+00],
[0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ...,
4.30894745e+02, 1.33343530e+03, 0.00000000e+00],
[7.57115707e+01, 0.00000000e+00, 0.00000000e+00, ...,
2.14354630e+02, 0.00000000e+00, 0.00000000e+00]]]],
dtype=float32)
features2:
array([[[[2.44103737e+01, 3.35516052e+02, 0.00000000e+00, ...,
0.00000000e+00, 2.06830643e+02, 0.00000000e+00],
[4.71717712e+02, 0.00000000e+00, 0.00000000e+00, ...,
2.63770996e+02, 0.00000000e+00, 0.00000000e+00],
[3.93549591e+02, 0.00000000e+00, 0.00000000e+00, ...,
1.77212814e+02, 0.00000000e+00, 0.00000000e+00],
...,
[5.33919487e+01, 0.00000000e+00, 0.00000000e+00, ...,
1.85940536e+02, 0.00000000e+00, 0.00000000e+00],
[0.00000000e+00, 2.96363708e+02, 0.00000000e+00, ...,
1.09057648e+02, 0.00000000e+00, 0.00000000e+00],
[2.27105503e+01, 8.29022141e+01, 0.00000000e+00, ...,
1.38949188e+02, 0.00000000e+00, 0.00000000e+00]],
[[0.00000000e+00, 0.00000000e+00, 2.47062546e+02, ...,
0.00000000e+00, 1.66465466e+03, 0.00000000e+00],
[0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ...,
6.74320862e+02, 4.15592712e+02, 0.00000000e+00],
[0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ...,
8.65957825e+02, 8.59399170e+02, 0.00000000e+00],
...,
[0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ...,
1.66129944e+02, 0.00000000e+00, 0.00000000e+00],
[0.00000000e+00, 2.76259674e+02, 0.00000000e+00, ...,
8.00474930e+01, 0.00000000e+00, 1.08291901e+02],
[0.00000000e+00, 2.20606117e+01, 0.00000000e+00, ...,
1.28005768e+02, 0.00000000e+00, 3.49725151e+01]],
[[0.00000000e+00, 2.14503006e+02, 8.82690811e+01, ...,
0.00000000e+00, 5.60968628e+02, 0.00000000e+00],
[3.28399010e+01, 0.00000000e+00, 0.00000000e+00, ...,
3.34213745e+02, 2.90819824e+02, 0.00000000e+00],
[8.66472626e+01, 0.00000000e+00, 1.10250635e+03, ...,
6.37486572e+02, 1.67822144e+03, 0.00000000e+00],
...,
[0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ...,
5.90463066e+01, 0.00000000e+00, 9.77452278e+00],
[0.00000000e+00, 3.39350586e+02, 4.62688398e+00, ...,
1.32679808e+00, 0.00000000e+00, 1.65987671e+02],
[2.47563610e+01, 7.48269196e+01, 1.33592939e+01, ...,
6.36582108e+01, 0.00000000e+00, 5.70933228e+01]],
...,
[[0.00000000e+00, 0.00000000e+00, 6.27470215e+02, ...,
2.55267532e+02, 2.27369629e+03, 0.00000000e+00],
[1.52827530e+02, 0.00000000e+00, 0.00000000e+00, ...,
1.20087329e+03, 0.00000000e+00, 0.00000000e+00],
[1.33066071e+02, 0.00000000e+00, 5.95311890e+02, ...,
7.66817871e+02, 0.00000000e+00, 0.00000000e+00],
...,
[0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ...,
4.81101898e+02, 0.00000000e+00, 0.00000000e+00],
[0.00000000e+00, 0.00000000e+00, 3.99484155e+03, ...,
5.40802429e+02, 0.00000000e+00, 0.00000000e+00],
[1.93494095e+02, 0.00000000e+00, 1.16481377e+02, ...,
3.75594208e+02, 0.00000000e+00, 0.00000000e+00]],
[[0.00000000e+00, 0.00000000e+00, 5.08203369e+02, ...,
3.65947357e+02, 2.66369580e+03, 0.00000000e+00],
[2.29821182e+02, 0.00000000e+00, 3.83578918e+02, ...,
1.37410413e+03, 1.28806320e+02, 0.00000000e+00],
[1.89210968e+02, 0.00000000e+00, 9.40994324e+02, ...,
8.16117615e+02, 0.00000000e+00, 0.00000000e+00],
...,
[0.00000000e+00, 0.00000000e+00, 1.34960962e+03, ...,
1.03916003e+03, 6.58975891e+02, 0.00000000e+00],
[6.77491531e+01, 0.00000000e+00, 2.07465186e+03, ...,
1.13461414e+03, 0.00000000e+00, 0.00000000e+00],
[2.96653259e+02, 0.00000000e+00, 0.00000000e+00, ...,
6.33178528e+02, 0.00000000e+00, 0.00000000e+00]],
[[0.00000000e+00, 0.00000000e+00, 1.20268628e+03, ...,
6.86023560e+01, 2.83282886e+03, 0.00000000e+00],
[0.00000000e+00, 0.00000000e+00, 3.50556335e+02, ...,
8.04942566e+02, 7.94925537e+02, 0.00000000e+00],
[0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ...,
3.74615967e+02, 0.00000000e+00, 0.00000000e+00],
...,
[0.00000000e+00, 0.00000000e+00, 1.17975757e+03, ...,
6.35223450e+02, 1.62643567e+03, 0.00000000e+00],
[0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ...,
9.20189697e+02, 4.05781097e+02, 0.00000000e+00],
[1.26037315e+02, 0.00000000e+00, 0.00000000e+00, ...,
4.17285614e+02, 0.00000000e+00, 0.00000000e+00]]]],
dtype=float32)
The image is taken from here. Path: v1.3/Code/Ours/Images_GroundTruth/BSD200/335094.png
Edit 1: Added additional code and results
python tensorflow image-processing keras vgg-net
I'm extracting intermediate layer outputs from pretrained VGG19 ConvNet for a given image. I expect that if I give the same image twice, I should get the same output. But, I'm not getting the same output. Why is this happening and how to fix this?
Additional Details:
I'm following this paper. They use a VGG19 ConvNet and extract the features from some intermediate layer (VGG22 means 2nd layer before 2nd convolution) for Super-Resolved Image and Ground-Truth Image. Then they calculate the mean squared error between these 2 feature sets and use it as a loss parameter. Now, my expectation is that if I give Ground Truth Image only twice, the mean squared error should be zero. But it is not happening? I'm getting different feature values at different iteration, but with same image. Also I noticed that, when I run the program again afresh, I get the same set of values. Code below for reference:
import numpy
from keras import backend as K
from keras.applications.vgg19 import VGG19, preprocess_input
from keras.preprocessing.image import img_to_array, load_img
model = VGG19()
vgg22_layer_output = K.function([model.layers[0].input], [model.layers[5].output])
# image_matrix is a 224x224x3 matrix for an RGB-image.
hr_image_obj = load_img(hr_image_path)
hr_image_matrix = img_to_array(hr_image_obj)
cropped_hr_image = hr_image_matrix[0:224, 0:224, :]
expanded_image = numpy.expand_dims(cropped_hr_image, axis=0)
preprocessed_image = preprocess_input(expanded_image)
features1 = vgg22_layer_output ([preprocessed_image])[0]
features2 = vgg22_layer_output ([preprocessed_image])[0]
Here, my expectation is that features1 = features2, which isn't
Results:
features1:
array([[[[2.15184002e+01, 1.81470230e+02, 0.00000000e+00, ...,
0.00000000e+00, 1.98130661e+02, 0.00000000e+00],
[2.27056488e+02, 0.00000000e+00, 0.00000000e+00, ...,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00],
[1.54923904e+02, 0.00000000e+00, 0.00000000e+00, ...,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00],
...,
[2.29082489e+02, 2.58140778e+02, 0.00000000e+00, ...,
3.18900665e+02, 0.00000000e+00, 0.00000000e+00],
[1.58660873e+02, 1.24280603e+03, 0.00000000e+00, ...,
2.76672821e+02, 0.00000000e+00, 0.00000000e+00],
[2.66982513e+02, 4.27661194e+02, 0.00000000e+00, ...,
4.57434418e+02, 0.00000000e+00, 0.00000000e+00]],
[[0.00000000e+00, 0.00000000e+00, 1.71959274e+02, ...,
0.00000000e+00, 1.25863232e+03, 0.00000000e+00],
[0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ...,
3.51934662e+02, 4.45714081e+02, 0.00000000e+00],
[0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ...,
3.73108368e+02, 7.51479004e+02, 0.00000000e+00],
...,
[0.00000000e+00, 3.06031370e+00, 0.00000000e+00, ...,
3.09630096e+02, 2.15055069e+02, 1.91232590e+02],
[0.00000000e+00, 1.33151245e+03, 0.00000000e+00, ...,
2.78728699e+02, 2.91452618e+01, 4.12124878e+02],
[1.13750778e+02, 3.04266022e+02, 0.00000000e+00, ...,
4.93073273e+02, 0.00000000e+00, 1.25463562e+02]],
[[0.00000000e+00, 2.36886551e+02, 1.87017990e+02, ...,
0.00000000e+00, 5.56484497e+02, 0.00000000e+00],
[0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ...,
1.29744125e+02, 5.47009888e+02, 0.00000000e+00],
[2.10977726e+01, 0.00000000e+00, 5.83388855e+02, ...,
3.78568268e+02, 1.76858459e+03, 0.00000000e+00],
...,
[0.00000000e+00, 2.26063950e+02, 0.00000000e+00, ...,
1.74201874e+02, 1.10421577e+02, 2.92625153e+02],
[0.00000000e+00, 1.49054639e+03, 1.73763367e+02, ...,
3.43214760e+01, 1.41045761e+02, 5.26752502e+02],
[1.79130356e+02, 4.18553101e+02, 1.12429085e+02, ...,
2.08473053e+02, 0.00000000e+00, 1.46159897e+02]],
...,
[[0.00000000e+00, 0.00000000e+00, 6.14884460e+02, ...,
4.48683044e+02, 2.60172217e+03, 0.00000000e+00],
[0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ...,
1.05306360e+03, 5.45696045e+02, 0.00000000e+00],
[5.33453941e+01, 0.00000000e+00, 6.09368164e+02, ...,
7.00016541e+02, 0.00000000e+00, 0.00000000e+00],
...,
[0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ...,
2.49793106e+02, 0.00000000e+00, 0.00000000e+00],
[0.00000000e+00, 0.00000000e+00, 3.44778638e+03, ...,
1.97339310e+02, 0.00000000e+00, 0.00000000e+00],
[1.27069351e+02, 0.00000000e+00, 0.00000000e+00, ...,
1.85339737e+02, 0.00000000e+00, 0.00000000e+00]],
[[0.00000000e+00, 0.00000000e+00, 4.90521271e+02, ...,
4.68645844e+02, 3.26934399e+03, 0.00000000e+00],
[2.26508102e+01, 0.00000000e+00, 7.08834915e+01, ...,
1.11953967e+03, 1.10590857e+03, 0.00000000e+00],
[1.11061287e+02, 0.00000000e+00, 8.05527405e+02, ...,
8.03228516e+02, 2.84233459e+02, 0.00000000e+00],
...,
[0.00000000e+00, 0.00000000e+00, 1.10313757e+03, ...,
5.78258667e+02, 1.47924316e+03, 0.00000000e+00],
[0.00000000e+00, 0.00000000e+00, 1.59146082e+03, ...,
7.10267578e+02, 6.43671143e+02, 0.00000000e+00],
[3.27744568e+02, 0.00000000e+00, 0.00000000e+00, ...,
4.53388458e+02, 0.00000000e+00, 0.00000000e+00]],
[[0.00000000e+00, 0.00000000e+00, 1.12306348e+03, ...,
1.63393646e+02, 3.52517969e+03, 0.00000000e+00],
[0.00000000e+00, 0.00000000e+00, 6.36935806e+01, ...,
4.52494598e+02, 1.94326257e+03, 0.00000000e+00],
[0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ...,
2.83666046e+02, 4.89346985e+02, 0.00000000e+00],
...,
[0.00000000e+00, 0.00000000e+00, 1.02328314e+03, ...,
2.65413391e+02, 2.64639990e+03, 0.00000000e+00],
[0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ...,
4.30894745e+02, 1.33343530e+03, 0.00000000e+00],
[7.57115707e+01, 0.00000000e+00, 0.00000000e+00, ...,
2.14354630e+02, 0.00000000e+00, 0.00000000e+00]]]],
dtype=float32)
features2:
array([[[[2.44103737e+01, 3.35516052e+02, 0.00000000e+00, ...,
0.00000000e+00, 2.06830643e+02, 0.00000000e+00],
[4.71717712e+02, 0.00000000e+00, 0.00000000e+00, ...,
2.63770996e+02, 0.00000000e+00, 0.00000000e+00],
[3.93549591e+02, 0.00000000e+00, 0.00000000e+00, ...,
1.77212814e+02, 0.00000000e+00, 0.00000000e+00],
...,
[5.33919487e+01, 0.00000000e+00, 0.00000000e+00, ...,
1.85940536e+02, 0.00000000e+00, 0.00000000e+00],
[0.00000000e+00, 2.96363708e+02, 0.00000000e+00, ...,
1.09057648e+02, 0.00000000e+00, 0.00000000e+00],
[2.27105503e+01, 8.29022141e+01, 0.00000000e+00, ...,
1.38949188e+02, 0.00000000e+00, 0.00000000e+00]],
[[0.00000000e+00, 0.00000000e+00, 2.47062546e+02, ...,
0.00000000e+00, 1.66465466e+03, 0.00000000e+00],
[0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ...,
6.74320862e+02, 4.15592712e+02, 0.00000000e+00],
[0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ...,
8.65957825e+02, 8.59399170e+02, 0.00000000e+00],
...,
[0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ...,
1.66129944e+02, 0.00000000e+00, 0.00000000e+00],
[0.00000000e+00, 2.76259674e+02, 0.00000000e+00, ...,
8.00474930e+01, 0.00000000e+00, 1.08291901e+02],
[0.00000000e+00, 2.20606117e+01, 0.00000000e+00, ...,
1.28005768e+02, 0.00000000e+00, 3.49725151e+01]],
[[0.00000000e+00, 2.14503006e+02, 8.82690811e+01, ...,
0.00000000e+00, 5.60968628e+02, 0.00000000e+00],
[3.28399010e+01, 0.00000000e+00, 0.00000000e+00, ...,
3.34213745e+02, 2.90819824e+02, 0.00000000e+00],
[8.66472626e+01, 0.00000000e+00, 1.10250635e+03, ...,
6.37486572e+02, 1.67822144e+03, 0.00000000e+00],
...,
[0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ...,
5.90463066e+01, 0.00000000e+00, 9.77452278e+00],
[0.00000000e+00, 3.39350586e+02, 4.62688398e+00, ...,
1.32679808e+00, 0.00000000e+00, 1.65987671e+02],
[2.47563610e+01, 7.48269196e+01, 1.33592939e+01, ...,
6.36582108e+01, 0.00000000e+00, 5.70933228e+01]],
...,
[[0.00000000e+00, 0.00000000e+00, 6.27470215e+02, ...,
2.55267532e+02, 2.27369629e+03, 0.00000000e+00],
[1.52827530e+02, 0.00000000e+00, 0.00000000e+00, ...,
1.20087329e+03, 0.00000000e+00, 0.00000000e+00],
[1.33066071e+02, 0.00000000e+00, 5.95311890e+02, ...,
7.66817871e+02, 0.00000000e+00, 0.00000000e+00],
...,
[0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ...,
4.81101898e+02, 0.00000000e+00, 0.00000000e+00],
[0.00000000e+00, 0.00000000e+00, 3.99484155e+03, ...,
5.40802429e+02, 0.00000000e+00, 0.00000000e+00],
[1.93494095e+02, 0.00000000e+00, 1.16481377e+02, ...,
3.75594208e+02, 0.00000000e+00, 0.00000000e+00]],
[[0.00000000e+00, 0.00000000e+00, 5.08203369e+02, ...,
3.65947357e+02, 2.66369580e+03, 0.00000000e+00],
[2.29821182e+02, 0.00000000e+00, 3.83578918e+02, ...,
1.37410413e+03, 1.28806320e+02, 0.00000000e+00],
[1.89210968e+02, 0.00000000e+00, 9.40994324e+02, ...,
8.16117615e+02, 0.00000000e+00, 0.00000000e+00],
...,
[0.00000000e+00, 0.00000000e+00, 1.34960962e+03, ...,
1.03916003e+03, 6.58975891e+02, 0.00000000e+00],
[6.77491531e+01, 0.00000000e+00, 2.07465186e+03, ...,
1.13461414e+03, 0.00000000e+00, 0.00000000e+00],
[2.96653259e+02, 0.00000000e+00, 0.00000000e+00, ...,
6.33178528e+02, 0.00000000e+00, 0.00000000e+00]],
[[0.00000000e+00, 0.00000000e+00, 1.20268628e+03, ...,
6.86023560e+01, 2.83282886e+03, 0.00000000e+00],
[0.00000000e+00, 0.00000000e+00, 3.50556335e+02, ...,
8.04942566e+02, 7.94925537e+02, 0.00000000e+00],
[0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ...,
3.74615967e+02, 0.00000000e+00, 0.00000000e+00],
...,
[0.00000000e+00, 0.00000000e+00, 1.17975757e+03, ...,
6.35223450e+02, 1.62643567e+03, 0.00000000e+00],
[0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ...,
9.20189697e+02, 4.05781097e+02, 0.00000000e+00],
[1.26037315e+02, 0.00000000e+00, 0.00000000e+00, ...,
4.17285614e+02, 0.00000000e+00, 0.00000000e+00]]]],
dtype=float32)
The image is taken from here. Path: v1.3/Code/Ours/Images_GroundTruth/BSD200/335094.png
Edit 1: Added additional code and results
python tensorflow image-processing keras vgg-net
python tensorflow image-processing keras vgg-net
edited Nov 23 at 1:47
asked Nov 22 at 18:54
Nagabhushan S N
403413
403413
The code you included doesn't show the problem, please add more detail and actual results you get.
– Matias Valdenegro
Nov 22 at 20:59
I've added more detail and results. Please let me know if you need more info and what exactly you want. Thanks!
– Nagabhushan S N
Nov 23 at 1:52
1
I have run the code you provided with that specific image and got equal features1 and features2 (numpy.array_equal(features1, features2)
wasTrue
). So, the problem probably lies somewhere else.
– Kilian Batzner
Nov 23 at 13:36
Oh! Might be then. Thanks for checking. Currently, I am using another method to get the features as given here: keras.io/getting-started/faq/… (1st method). It is giving same values. I'll investigate later what was going wrong. Thanks again!
– Nagabhushan S N
Nov 23 at 15:22
I have narrowed down the error. Thehr_image_matrix
i.e. the image read using keras'load_img
andimg_to_array
functions was somehow giving negative values for the image matrix. Very strange. So, I replaced that withcv2.imread(hr_image_path, cv2.IMREAD_COLOR)
and then its working as expected.
– Nagabhushan S N
Nov 23 at 16:28
add a comment |
The code you included doesn't show the problem, please add more detail and actual results you get.
– Matias Valdenegro
Nov 22 at 20:59
I've added more detail and results. Please let me know if you need more info and what exactly you want. Thanks!
– Nagabhushan S N
Nov 23 at 1:52
1
I have run the code you provided with that specific image and got equal features1 and features2 (numpy.array_equal(features1, features2)
wasTrue
). So, the problem probably lies somewhere else.
– Kilian Batzner
Nov 23 at 13:36
Oh! Might be then. Thanks for checking. Currently, I am using another method to get the features as given here: keras.io/getting-started/faq/… (1st method). It is giving same values. I'll investigate later what was going wrong. Thanks again!
– Nagabhushan S N
Nov 23 at 15:22
I have narrowed down the error. Thehr_image_matrix
i.e. the image read using keras'load_img
andimg_to_array
functions was somehow giving negative values for the image matrix. Very strange. So, I replaced that withcv2.imread(hr_image_path, cv2.IMREAD_COLOR)
and then its working as expected.
– Nagabhushan S N
Nov 23 at 16:28
The code you included doesn't show the problem, please add more detail and actual results you get.
– Matias Valdenegro
Nov 22 at 20:59
The code you included doesn't show the problem, please add more detail and actual results you get.
– Matias Valdenegro
Nov 22 at 20:59
I've added more detail and results. Please let me know if you need more info and what exactly you want. Thanks!
– Nagabhushan S N
Nov 23 at 1:52
I've added more detail and results. Please let me know if you need more info and what exactly you want. Thanks!
– Nagabhushan S N
Nov 23 at 1:52
1
1
I have run the code you provided with that specific image and got equal features1 and features2 (
numpy.array_equal(features1, features2)
was True
). So, the problem probably lies somewhere else.– Kilian Batzner
Nov 23 at 13:36
I have run the code you provided with that specific image and got equal features1 and features2 (
numpy.array_equal(features1, features2)
was True
). So, the problem probably lies somewhere else.– Kilian Batzner
Nov 23 at 13:36
Oh! Might be then. Thanks for checking. Currently, I am using another method to get the features as given here: keras.io/getting-started/faq/… (1st method). It is giving same values. I'll investigate later what was going wrong. Thanks again!
– Nagabhushan S N
Nov 23 at 15:22
Oh! Might be then. Thanks for checking. Currently, I am using another method to get the features as given here: keras.io/getting-started/faq/… (1st method). It is giving same values. I'll investigate later what was going wrong. Thanks again!
– Nagabhushan S N
Nov 23 at 15:22
I have narrowed down the error. The
hr_image_matrix
i.e. the image read using keras' load_img
and img_to_array
functions was somehow giving negative values for the image matrix. Very strange. So, I replaced that with cv2.imread(hr_image_path, cv2.IMREAD_COLOR)
and then its working as expected.– Nagabhushan S N
Nov 23 at 16:28
I have narrowed down the error. The
hr_image_matrix
i.e. the image read using keras' load_img
and img_to_array
functions was somehow giving negative values for the image matrix. Very strange. So, I replaced that with cv2.imread(hr_image_path, cv2.IMREAD_COLOR)
and then its working as expected.– Nagabhushan S N
Nov 23 at 16:28
add a comment |
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53436736%2flayer-output-of-keras-pre-trained-vgg19-model-produces-different-outputs-for-sam%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53436736%2flayer-output-of-keras-pre-trained-vgg19-model-produces-different-outputs-for-sam%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
The code you included doesn't show the problem, please add more detail and actual results you get.
– Matias Valdenegro
Nov 22 at 20:59
I've added more detail and results. Please let me know if you need more info and what exactly you want. Thanks!
– Nagabhushan S N
Nov 23 at 1:52
1
I have run the code you provided with that specific image and got equal features1 and features2 (
numpy.array_equal(features1, features2)
wasTrue
). So, the problem probably lies somewhere else.– Kilian Batzner
Nov 23 at 13:36
Oh! Might be then. Thanks for checking. Currently, I am using another method to get the features as given here: keras.io/getting-started/faq/… (1st method). It is giving same values. I'll investigate later what was going wrong. Thanks again!
– Nagabhushan S N
Nov 23 at 15:22
I have narrowed down the error. The
hr_image_matrix
i.e. the image read using keras'load_img
andimg_to_array
functions was somehow giving negative values for the image matrix. Very strange. So, I replaced that withcv2.imread(hr_image_path, cv2.IMREAD_COLOR)
and then its working as expected.– Nagabhushan S N
Nov 23 at 16:28