Combining Sequential Feature Selection with Grid Search











up vote
0
down vote

favorite












I'm struggling to combine Sequential Feature Selector (from mlxtend) with a GridSearchCV (from sklearn).



My objective is to perform a forward feature selection for each set of parameters, to find which combination of parameters and features produces the best score.
The following code is based on example 8 of the user guide from mlxtend (see http://rasbt.github.io/mlxtend/user_guide/feature_selection/SequentialFeatureSelector/#example-8-sequential-feature-selection-and-gridsearch)



X = data.values #dataframe with 48 features and 200 rows
y = diags #binary classification for each row

X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.3, random_state=0)


svm = svm.SVC()

sfs = SFS(estimator = svm,
k_features = (1,len(data.columns)),
forward = True,
floating=False,
scoring = 'f1',
cv = 5)

pipe = Pipeline([
('sfs', sfs),
('svm', svm)
])

param_grid = [
{
'sfs__estimator__C': [0.001, 0.01, 0.1, 1, 10, 100, 1000],
'sfs__estimator__gamma': ['auto', 'scale', 0.001, 0.0001],
'sfs__estimator__kernel': ['linear', 'rbf'],
}
]


gs = GridSearchCV(estimator = pipe,
param_grid = param_grid,
scoring = 'f1',
n_jobs=1,
cv=5,
refit = True)

gs.fit(X_train, y_train)

print("Best parameters via GridSearch", gs.best_params_)

print("nBest features:n", gs.best_estimator_.steps[0][1].k_feature_idx_)
print("nBest score:n", gs.best_estimator_.steps[0][1].k_score_)


When executing this code I get the following:



Best parameters via GridSearch {'sfs__estimator__gamma': 'auto', 'sfs__estimator__kernel': 'linear', 'sfs__estimator__C': 0.001}

Best features:
(16, 39)

Best score:
0.31333333333333335


I doubted these were the best results as I did actually get better results when setting a higher minimum number of features.



I noticed that changing the order of the grid of parameters modified the results. When using:



param_grid = [
{
# Notice the change of order for C, 0.01 is now first
'sfs__estimator__C': [0.01, 0.001, 0.1, 1, 10, 100, 1000],
'sfs__estimator__gamma': ['auto', 'scale', 0.001, 0.0001],
'sfs__estimator__kernel': ['linear', 'rbf'],
}
]


I got the following results:



Best parameters via GridSearch {'sfs__estimator__gamma': 'auto', 'sfs__estimator__kernel': 'linear', 'sfs__estimator__C': 0.01}

Best features:
(16, 39)

Best score:
0.4428571428571429


Best parameters seem to always return the first value of each parameter. I tried other combinations and the parameters where always the first ones, and the best features did't change.



Am I using GridSearchCV wrong? Or am I printing the wrong attributes?










share|improve this question


























    up vote
    0
    down vote

    favorite












    I'm struggling to combine Sequential Feature Selector (from mlxtend) with a GridSearchCV (from sklearn).



    My objective is to perform a forward feature selection for each set of parameters, to find which combination of parameters and features produces the best score.
    The following code is based on example 8 of the user guide from mlxtend (see http://rasbt.github.io/mlxtend/user_guide/feature_selection/SequentialFeatureSelector/#example-8-sequential-feature-selection-and-gridsearch)



    X = data.values #dataframe with 48 features and 200 rows
    y = diags #binary classification for each row

    X_train, X_test, y_train, y_test = train_test_split(
    X, y, test_size=0.3, random_state=0)


    svm = svm.SVC()

    sfs = SFS(estimator = svm,
    k_features = (1,len(data.columns)),
    forward = True,
    floating=False,
    scoring = 'f1',
    cv = 5)

    pipe = Pipeline([
    ('sfs', sfs),
    ('svm', svm)
    ])

    param_grid = [
    {
    'sfs__estimator__C': [0.001, 0.01, 0.1, 1, 10, 100, 1000],
    'sfs__estimator__gamma': ['auto', 'scale', 0.001, 0.0001],
    'sfs__estimator__kernel': ['linear', 'rbf'],
    }
    ]


    gs = GridSearchCV(estimator = pipe,
    param_grid = param_grid,
    scoring = 'f1',
    n_jobs=1,
    cv=5,
    refit = True)

    gs.fit(X_train, y_train)

    print("Best parameters via GridSearch", gs.best_params_)

    print("nBest features:n", gs.best_estimator_.steps[0][1].k_feature_idx_)
    print("nBest score:n", gs.best_estimator_.steps[0][1].k_score_)


    When executing this code I get the following:



    Best parameters via GridSearch {'sfs__estimator__gamma': 'auto', 'sfs__estimator__kernel': 'linear', 'sfs__estimator__C': 0.001}

    Best features:
    (16, 39)

    Best score:
    0.31333333333333335


    I doubted these were the best results as I did actually get better results when setting a higher minimum number of features.



    I noticed that changing the order of the grid of parameters modified the results. When using:



    param_grid = [
    {
    # Notice the change of order for C, 0.01 is now first
    'sfs__estimator__C': [0.01, 0.001, 0.1, 1, 10, 100, 1000],
    'sfs__estimator__gamma': ['auto', 'scale', 0.001, 0.0001],
    'sfs__estimator__kernel': ['linear', 'rbf'],
    }
    ]


    I got the following results:



    Best parameters via GridSearch {'sfs__estimator__gamma': 'auto', 'sfs__estimator__kernel': 'linear', 'sfs__estimator__C': 0.01}

    Best features:
    (16, 39)

    Best score:
    0.4428571428571429


    Best parameters seem to always return the first value of each parameter. I tried other combinations and the parameters where always the first ones, and the best features did't change.



    Am I using GridSearchCV wrong? Or am I printing the wrong attributes?










    share|improve this question
























      up vote
      0
      down vote

      favorite









      up vote
      0
      down vote

      favorite











      I'm struggling to combine Sequential Feature Selector (from mlxtend) with a GridSearchCV (from sklearn).



      My objective is to perform a forward feature selection for each set of parameters, to find which combination of parameters and features produces the best score.
      The following code is based on example 8 of the user guide from mlxtend (see http://rasbt.github.io/mlxtend/user_guide/feature_selection/SequentialFeatureSelector/#example-8-sequential-feature-selection-and-gridsearch)



      X = data.values #dataframe with 48 features and 200 rows
      y = diags #binary classification for each row

      X_train, X_test, y_train, y_test = train_test_split(
      X, y, test_size=0.3, random_state=0)


      svm = svm.SVC()

      sfs = SFS(estimator = svm,
      k_features = (1,len(data.columns)),
      forward = True,
      floating=False,
      scoring = 'f1',
      cv = 5)

      pipe = Pipeline([
      ('sfs', sfs),
      ('svm', svm)
      ])

      param_grid = [
      {
      'sfs__estimator__C': [0.001, 0.01, 0.1, 1, 10, 100, 1000],
      'sfs__estimator__gamma': ['auto', 'scale', 0.001, 0.0001],
      'sfs__estimator__kernel': ['linear', 'rbf'],
      }
      ]


      gs = GridSearchCV(estimator = pipe,
      param_grid = param_grid,
      scoring = 'f1',
      n_jobs=1,
      cv=5,
      refit = True)

      gs.fit(X_train, y_train)

      print("Best parameters via GridSearch", gs.best_params_)

      print("nBest features:n", gs.best_estimator_.steps[0][1].k_feature_idx_)
      print("nBest score:n", gs.best_estimator_.steps[0][1].k_score_)


      When executing this code I get the following:



      Best parameters via GridSearch {'sfs__estimator__gamma': 'auto', 'sfs__estimator__kernel': 'linear', 'sfs__estimator__C': 0.001}

      Best features:
      (16, 39)

      Best score:
      0.31333333333333335


      I doubted these were the best results as I did actually get better results when setting a higher minimum number of features.



      I noticed that changing the order of the grid of parameters modified the results. When using:



      param_grid = [
      {
      # Notice the change of order for C, 0.01 is now first
      'sfs__estimator__C': [0.01, 0.001, 0.1, 1, 10, 100, 1000],
      'sfs__estimator__gamma': ['auto', 'scale', 0.001, 0.0001],
      'sfs__estimator__kernel': ['linear', 'rbf'],
      }
      ]


      I got the following results:



      Best parameters via GridSearch {'sfs__estimator__gamma': 'auto', 'sfs__estimator__kernel': 'linear', 'sfs__estimator__C': 0.01}

      Best features:
      (16, 39)

      Best score:
      0.4428571428571429


      Best parameters seem to always return the first value of each parameter. I tried other combinations and the parameters where always the first ones, and the best features did't change.



      Am I using GridSearchCV wrong? Or am I printing the wrong attributes?










      share|improve this question













      I'm struggling to combine Sequential Feature Selector (from mlxtend) with a GridSearchCV (from sklearn).



      My objective is to perform a forward feature selection for each set of parameters, to find which combination of parameters and features produces the best score.
      The following code is based on example 8 of the user guide from mlxtend (see http://rasbt.github.io/mlxtend/user_guide/feature_selection/SequentialFeatureSelector/#example-8-sequential-feature-selection-and-gridsearch)



      X = data.values #dataframe with 48 features and 200 rows
      y = diags #binary classification for each row

      X_train, X_test, y_train, y_test = train_test_split(
      X, y, test_size=0.3, random_state=0)


      svm = svm.SVC()

      sfs = SFS(estimator = svm,
      k_features = (1,len(data.columns)),
      forward = True,
      floating=False,
      scoring = 'f1',
      cv = 5)

      pipe = Pipeline([
      ('sfs', sfs),
      ('svm', svm)
      ])

      param_grid = [
      {
      'sfs__estimator__C': [0.001, 0.01, 0.1, 1, 10, 100, 1000],
      'sfs__estimator__gamma': ['auto', 'scale', 0.001, 0.0001],
      'sfs__estimator__kernel': ['linear', 'rbf'],
      }
      ]


      gs = GridSearchCV(estimator = pipe,
      param_grid = param_grid,
      scoring = 'f1',
      n_jobs=1,
      cv=5,
      refit = True)

      gs.fit(X_train, y_train)

      print("Best parameters via GridSearch", gs.best_params_)

      print("nBest features:n", gs.best_estimator_.steps[0][1].k_feature_idx_)
      print("nBest score:n", gs.best_estimator_.steps[0][1].k_score_)


      When executing this code I get the following:



      Best parameters via GridSearch {'sfs__estimator__gamma': 'auto', 'sfs__estimator__kernel': 'linear', 'sfs__estimator__C': 0.001}

      Best features:
      (16, 39)

      Best score:
      0.31333333333333335


      I doubted these were the best results as I did actually get better results when setting a higher minimum number of features.



      I noticed that changing the order of the grid of parameters modified the results. When using:



      param_grid = [
      {
      # Notice the change of order for C, 0.01 is now first
      'sfs__estimator__C': [0.01, 0.001, 0.1, 1, 10, 100, 1000],
      'sfs__estimator__gamma': ['auto', 'scale', 0.001, 0.0001],
      'sfs__estimator__kernel': ['linear', 'rbf'],
      }
      ]


      I got the following results:



      Best parameters via GridSearch {'sfs__estimator__gamma': 'auto', 'sfs__estimator__kernel': 'linear', 'sfs__estimator__C': 0.01}

      Best features:
      (16, 39)

      Best score:
      0.4428571428571429


      Best parameters seem to always return the first value of each parameter. I tried other combinations and the parameters where always the first ones, and the best features did't change.



      Am I using GridSearchCV wrong? Or am I printing the wrong attributes?







      python scikit-learn svm grid-search mlxtend






      share|improve this question













      share|improve this question











      share|improve this question




      share|improve this question










      asked Nov 22 at 11:35









      Eric R

      12




      12





























          active

          oldest

          votes











          Your Answer






          StackExchange.ifUsing("editor", function () {
          StackExchange.using("externalEditor", function () {
          StackExchange.using("snippets", function () {
          StackExchange.snippets.init();
          });
          });
          }, "code-snippets");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "1"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53430101%2fcombining-sequential-feature-selection-with-grid-search%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown






























          active

          oldest

          votes













          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Stack Overflow!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          To learn more, see our tips on writing great answers.





          Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


          Please pay close attention to the following guidance:


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53430101%2fcombining-sequential-feature-selection-with-grid-search%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          A CLEAN and SIMPLE way to add appendices to Table of Contents and bookmarks

          Calculate evaluation metrics using cross_val_predict sklearn

          Insert data from modal to MySQL (multiple modal on website)