Force felt by a moving charge due to its own magnetic field?
$begingroup$
Suppose a moving proton traverses a uniform magnetic field with constant velocity. Note that because the proton is moving, it is generating its own magnetic field.
Is the magnetic force experienced by the proton completely explained by the Lorentz force law, i.e., F = q (v x B)?
Or, is the proton also experiencing an additional magnetic force arising from the interaction of its own magnetic field with the external field? If that is incorrect, is the Lorentz force law actually just describing the result of proton field-external field interactions, such that any and all magnetic force on the proton is explained by the Lorentz force?
electromagnetism magnetic-fields
New contributor
$endgroup$
add a comment |
$begingroup$
Suppose a moving proton traverses a uniform magnetic field with constant velocity. Note that because the proton is moving, it is generating its own magnetic field.
Is the magnetic force experienced by the proton completely explained by the Lorentz force law, i.e., F = q (v x B)?
Or, is the proton also experiencing an additional magnetic force arising from the interaction of its own magnetic field with the external field? If that is incorrect, is the Lorentz force law actually just describing the result of proton field-external field interactions, such that any and all magnetic force on the proton is explained by the Lorentz force?
electromagnetism magnetic-fields
New contributor
$endgroup$
1
$begingroup$
A moving proton can’t traverse a uniform magnetic field with uniform velocity, unless the field is parallel or antiparallel to the proton’s direction of motion. Otherwise, there will be a force making it accelerate.
$endgroup$
– G. Smith
2 hours ago
add a comment |
$begingroup$
Suppose a moving proton traverses a uniform magnetic field with constant velocity. Note that because the proton is moving, it is generating its own magnetic field.
Is the magnetic force experienced by the proton completely explained by the Lorentz force law, i.e., F = q (v x B)?
Or, is the proton also experiencing an additional magnetic force arising from the interaction of its own magnetic field with the external field? If that is incorrect, is the Lorentz force law actually just describing the result of proton field-external field interactions, such that any and all magnetic force on the proton is explained by the Lorentz force?
electromagnetism magnetic-fields
New contributor
$endgroup$
Suppose a moving proton traverses a uniform magnetic field with constant velocity. Note that because the proton is moving, it is generating its own magnetic field.
Is the magnetic force experienced by the proton completely explained by the Lorentz force law, i.e., F = q (v x B)?
Or, is the proton also experiencing an additional magnetic force arising from the interaction of its own magnetic field with the external field? If that is incorrect, is the Lorentz force law actually just describing the result of proton field-external field interactions, such that any and all magnetic force on the proton is explained by the Lorentz force?
electromagnetism magnetic-fields
electromagnetism magnetic-fields
New contributor
New contributor
New contributor
asked 3 hours ago
M. A.M. A.
111
111
New contributor
New contributor
1
$begingroup$
A moving proton can’t traverse a uniform magnetic field with uniform velocity, unless the field is parallel or antiparallel to the proton’s direction of motion. Otherwise, there will be a force making it accelerate.
$endgroup$
– G. Smith
2 hours ago
add a comment |
1
$begingroup$
A moving proton can’t traverse a uniform magnetic field with uniform velocity, unless the field is parallel or antiparallel to the proton’s direction of motion. Otherwise, there will be a force making it accelerate.
$endgroup$
– G. Smith
2 hours ago
1
1
$begingroup$
A moving proton can’t traverse a uniform magnetic field with uniform velocity, unless the field is parallel or antiparallel to the proton’s direction of motion. Otherwise, there will be a force making it accelerate.
$endgroup$
– G. Smith
2 hours ago
$begingroup$
A moving proton can’t traverse a uniform magnetic field with uniform velocity, unless the field is parallel or antiparallel to the proton’s direction of motion. Otherwise, there will be a force making it accelerate.
$endgroup$
– G. Smith
2 hours ago
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Magnetic fields do not interact with magnetic fields; they simply superpose. Instead, magnetic fields interact with charged particles.
It is reasonable to ask whether a moving charged particle feels its own magnetic field, just as it is reasonable to ask whether a stationary (or moving) charged particle feels its own electric field.
The answer in the case of stationary or uniformly-moving charged particle is that these electric and magnetic self-forces are observed to be zero. For a point particle, its electrical and magnetic fields become infinitely large near the particle, but they can be understood as acting on the particle in a symmetric way such that there is no net force in any direction.
In the case of an accelerating charged particle, things are more complicated. Then the Lorentz force due to external fields is not the whole story. An accelerating charge radiates electromagnetic waves that carry energy, momentum, and angular momentum away to infinity. The energy in these waves must come from the kinetic energy of the particle, so there must be a backreaction force on the particle slowing it down, in order to conserve energy. This backreaction can be understood as the self-force, where the accelerating particle’s own field exerts a nonzero force on it.
$endgroup$
$begingroup$
The idea of the diverging electric and magnetic field cancelling out seems too convenient to me. I first saw it when reading the Schwinger book (chapter 1 or 2 I think) but the argument felt rather informal. Is there any formal way to prove it or to work around it?
$endgroup$
– Salvador Villarreal
1 hour ago
$begingroup$
I think you can assume a finite radius for the particle, calculate the self-force, and then take the limit as the radius goes to zero.
$endgroup$
– G. Smith
41 mins ago
$begingroup$
Thanks a lot for the response. So, is it fair to say that it is futile to try and understand the magnetic part of the Lorentz force as a result of interacting magnetic field lines somehow "pushing" or exerting a force on a moving charged particle? If I understand correctly, what is happening is the field is interacting directly with the particle, and the particle's own field is of no consequence. I suppose the next step is to learn how this discussion applies to permanent magnets and the forces between them, but that is probably beyond my grasp!
$endgroup$
– M. A.
39 mins ago
$begingroup$
If you are referring to the “catapult field” mentioned in your newer question, I consider that a misconception. I don’t think you’ll find the concept of a catapult field in physics textbooks. (Where did you see it?) The only way classical magnetic fields interact is to superpose. For a charge in uniform motion, the self-force has no net effect and superposing it with the external field does not change this. You should think of the charge as directly interacting with the external field, and, if accelerating, also with its own field.
$endgroup$
– G. Smith
26 mins ago
$begingroup$
For other readers, the newer question I am referring to is physics.stackexchange.com/questions/459691/….
$endgroup$
– G. Smith
25 mins ago
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "151"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
M. A. is a new contributor. Be nice, and check out our Code of Conduct.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f459674%2fforce-felt-by-a-moving-charge-due-to-its-own-magnetic-field%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Magnetic fields do not interact with magnetic fields; they simply superpose. Instead, magnetic fields interact with charged particles.
It is reasonable to ask whether a moving charged particle feels its own magnetic field, just as it is reasonable to ask whether a stationary (or moving) charged particle feels its own electric field.
The answer in the case of stationary or uniformly-moving charged particle is that these electric and magnetic self-forces are observed to be zero. For a point particle, its electrical and magnetic fields become infinitely large near the particle, but they can be understood as acting on the particle in a symmetric way such that there is no net force in any direction.
In the case of an accelerating charged particle, things are more complicated. Then the Lorentz force due to external fields is not the whole story. An accelerating charge radiates electromagnetic waves that carry energy, momentum, and angular momentum away to infinity. The energy in these waves must come from the kinetic energy of the particle, so there must be a backreaction force on the particle slowing it down, in order to conserve energy. This backreaction can be understood as the self-force, where the accelerating particle’s own field exerts a nonzero force on it.
$endgroup$
$begingroup$
The idea of the diverging electric and magnetic field cancelling out seems too convenient to me. I first saw it when reading the Schwinger book (chapter 1 or 2 I think) but the argument felt rather informal. Is there any formal way to prove it or to work around it?
$endgroup$
– Salvador Villarreal
1 hour ago
$begingroup$
I think you can assume a finite radius for the particle, calculate the self-force, and then take the limit as the radius goes to zero.
$endgroup$
– G. Smith
41 mins ago
$begingroup$
Thanks a lot for the response. So, is it fair to say that it is futile to try and understand the magnetic part of the Lorentz force as a result of interacting magnetic field lines somehow "pushing" or exerting a force on a moving charged particle? If I understand correctly, what is happening is the field is interacting directly with the particle, and the particle's own field is of no consequence. I suppose the next step is to learn how this discussion applies to permanent magnets and the forces between them, but that is probably beyond my grasp!
$endgroup$
– M. A.
39 mins ago
$begingroup$
If you are referring to the “catapult field” mentioned in your newer question, I consider that a misconception. I don’t think you’ll find the concept of a catapult field in physics textbooks. (Where did you see it?) The only way classical magnetic fields interact is to superpose. For a charge in uniform motion, the self-force has no net effect and superposing it with the external field does not change this. You should think of the charge as directly interacting with the external field, and, if accelerating, also with its own field.
$endgroup$
– G. Smith
26 mins ago
$begingroup$
For other readers, the newer question I am referring to is physics.stackexchange.com/questions/459691/….
$endgroup$
– G. Smith
25 mins ago
add a comment |
$begingroup$
Magnetic fields do not interact with magnetic fields; they simply superpose. Instead, magnetic fields interact with charged particles.
It is reasonable to ask whether a moving charged particle feels its own magnetic field, just as it is reasonable to ask whether a stationary (or moving) charged particle feels its own electric field.
The answer in the case of stationary or uniformly-moving charged particle is that these electric and magnetic self-forces are observed to be zero. For a point particle, its electrical and magnetic fields become infinitely large near the particle, but they can be understood as acting on the particle in a symmetric way such that there is no net force in any direction.
In the case of an accelerating charged particle, things are more complicated. Then the Lorentz force due to external fields is not the whole story. An accelerating charge radiates electromagnetic waves that carry energy, momentum, and angular momentum away to infinity. The energy in these waves must come from the kinetic energy of the particle, so there must be a backreaction force on the particle slowing it down, in order to conserve energy. This backreaction can be understood as the self-force, where the accelerating particle’s own field exerts a nonzero force on it.
$endgroup$
$begingroup$
The idea of the diverging electric and magnetic field cancelling out seems too convenient to me. I first saw it when reading the Schwinger book (chapter 1 or 2 I think) but the argument felt rather informal. Is there any formal way to prove it or to work around it?
$endgroup$
– Salvador Villarreal
1 hour ago
$begingroup$
I think you can assume a finite radius for the particle, calculate the self-force, and then take the limit as the radius goes to zero.
$endgroup$
– G. Smith
41 mins ago
$begingroup$
Thanks a lot for the response. So, is it fair to say that it is futile to try and understand the magnetic part of the Lorentz force as a result of interacting magnetic field lines somehow "pushing" or exerting a force on a moving charged particle? If I understand correctly, what is happening is the field is interacting directly with the particle, and the particle's own field is of no consequence. I suppose the next step is to learn how this discussion applies to permanent magnets and the forces between them, but that is probably beyond my grasp!
$endgroup$
– M. A.
39 mins ago
$begingroup$
If you are referring to the “catapult field” mentioned in your newer question, I consider that a misconception. I don’t think you’ll find the concept of a catapult field in physics textbooks. (Where did you see it?) The only way classical magnetic fields interact is to superpose. For a charge in uniform motion, the self-force has no net effect and superposing it with the external field does not change this. You should think of the charge as directly interacting with the external field, and, if accelerating, also with its own field.
$endgroup$
– G. Smith
26 mins ago
$begingroup$
For other readers, the newer question I am referring to is physics.stackexchange.com/questions/459691/….
$endgroup$
– G. Smith
25 mins ago
add a comment |
$begingroup$
Magnetic fields do not interact with magnetic fields; they simply superpose. Instead, magnetic fields interact with charged particles.
It is reasonable to ask whether a moving charged particle feels its own magnetic field, just as it is reasonable to ask whether a stationary (or moving) charged particle feels its own electric field.
The answer in the case of stationary or uniformly-moving charged particle is that these electric and magnetic self-forces are observed to be zero. For a point particle, its electrical and magnetic fields become infinitely large near the particle, but they can be understood as acting on the particle in a symmetric way such that there is no net force in any direction.
In the case of an accelerating charged particle, things are more complicated. Then the Lorentz force due to external fields is not the whole story. An accelerating charge radiates electromagnetic waves that carry energy, momentum, and angular momentum away to infinity. The energy in these waves must come from the kinetic energy of the particle, so there must be a backreaction force on the particle slowing it down, in order to conserve energy. This backreaction can be understood as the self-force, where the accelerating particle’s own field exerts a nonzero force on it.
$endgroup$
Magnetic fields do not interact with magnetic fields; they simply superpose. Instead, magnetic fields interact with charged particles.
It is reasonable to ask whether a moving charged particle feels its own magnetic field, just as it is reasonable to ask whether a stationary (or moving) charged particle feels its own electric field.
The answer in the case of stationary or uniformly-moving charged particle is that these electric and magnetic self-forces are observed to be zero. For a point particle, its electrical and magnetic fields become infinitely large near the particle, but they can be understood as acting on the particle in a symmetric way such that there is no net force in any direction.
In the case of an accelerating charged particle, things are more complicated. Then the Lorentz force due to external fields is not the whole story. An accelerating charge radiates electromagnetic waves that carry energy, momentum, and angular momentum away to infinity. The energy in these waves must come from the kinetic energy of the particle, so there must be a backreaction force on the particle slowing it down, in order to conserve energy. This backreaction can be understood as the self-force, where the accelerating particle’s own field exerts a nonzero force on it.
edited 2 hours ago
answered 3 hours ago
G. SmithG. Smith
6,79711123
6,79711123
$begingroup$
The idea of the diverging electric and magnetic field cancelling out seems too convenient to me. I first saw it when reading the Schwinger book (chapter 1 or 2 I think) but the argument felt rather informal. Is there any formal way to prove it or to work around it?
$endgroup$
– Salvador Villarreal
1 hour ago
$begingroup$
I think you can assume a finite radius for the particle, calculate the self-force, and then take the limit as the radius goes to zero.
$endgroup$
– G. Smith
41 mins ago
$begingroup$
Thanks a lot for the response. So, is it fair to say that it is futile to try and understand the magnetic part of the Lorentz force as a result of interacting magnetic field lines somehow "pushing" or exerting a force on a moving charged particle? If I understand correctly, what is happening is the field is interacting directly with the particle, and the particle's own field is of no consequence. I suppose the next step is to learn how this discussion applies to permanent magnets and the forces between them, but that is probably beyond my grasp!
$endgroup$
– M. A.
39 mins ago
$begingroup$
If you are referring to the “catapult field” mentioned in your newer question, I consider that a misconception. I don’t think you’ll find the concept of a catapult field in physics textbooks. (Where did you see it?) The only way classical magnetic fields interact is to superpose. For a charge in uniform motion, the self-force has no net effect and superposing it with the external field does not change this. You should think of the charge as directly interacting with the external field, and, if accelerating, also with its own field.
$endgroup$
– G. Smith
26 mins ago
$begingroup$
For other readers, the newer question I am referring to is physics.stackexchange.com/questions/459691/….
$endgroup$
– G. Smith
25 mins ago
add a comment |
$begingroup$
The idea of the diverging electric and magnetic field cancelling out seems too convenient to me. I first saw it when reading the Schwinger book (chapter 1 or 2 I think) but the argument felt rather informal. Is there any formal way to prove it or to work around it?
$endgroup$
– Salvador Villarreal
1 hour ago
$begingroup$
I think you can assume a finite radius for the particle, calculate the self-force, and then take the limit as the radius goes to zero.
$endgroup$
– G. Smith
41 mins ago
$begingroup$
Thanks a lot for the response. So, is it fair to say that it is futile to try and understand the magnetic part of the Lorentz force as a result of interacting magnetic field lines somehow "pushing" or exerting a force on a moving charged particle? If I understand correctly, what is happening is the field is interacting directly with the particle, and the particle's own field is of no consequence. I suppose the next step is to learn how this discussion applies to permanent magnets and the forces between them, but that is probably beyond my grasp!
$endgroup$
– M. A.
39 mins ago
$begingroup$
If you are referring to the “catapult field” mentioned in your newer question, I consider that a misconception. I don’t think you’ll find the concept of a catapult field in physics textbooks. (Where did you see it?) The only way classical magnetic fields interact is to superpose. For a charge in uniform motion, the self-force has no net effect and superposing it with the external field does not change this. You should think of the charge as directly interacting with the external field, and, if accelerating, also with its own field.
$endgroup$
– G. Smith
26 mins ago
$begingroup$
For other readers, the newer question I am referring to is physics.stackexchange.com/questions/459691/….
$endgroup$
– G. Smith
25 mins ago
$begingroup$
The idea of the diverging electric and magnetic field cancelling out seems too convenient to me. I first saw it when reading the Schwinger book (chapter 1 or 2 I think) but the argument felt rather informal. Is there any formal way to prove it or to work around it?
$endgroup$
– Salvador Villarreal
1 hour ago
$begingroup$
The idea of the diverging electric and magnetic field cancelling out seems too convenient to me. I first saw it when reading the Schwinger book (chapter 1 or 2 I think) but the argument felt rather informal. Is there any formal way to prove it or to work around it?
$endgroup$
– Salvador Villarreal
1 hour ago
$begingroup$
I think you can assume a finite radius for the particle, calculate the self-force, and then take the limit as the radius goes to zero.
$endgroup$
– G. Smith
41 mins ago
$begingroup$
I think you can assume a finite radius for the particle, calculate the self-force, and then take the limit as the radius goes to zero.
$endgroup$
– G. Smith
41 mins ago
$begingroup$
Thanks a lot for the response. So, is it fair to say that it is futile to try and understand the magnetic part of the Lorentz force as a result of interacting magnetic field lines somehow "pushing" or exerting a force on a moving charged particle? If I understand correctly, what is happening is the field is interacting directly with the particle, and the particle's own field is of no consequence. I suppose the next step is to learn how this discussion applies to permanent magnets and the forces between them, but that is probably beyond my grasp!
$endgroup$
– M. A.
39 mins ago
$begingroup$
Thanks a lot for the response. So, is it fair to say that it is futile to try and understand the magnetic part of the Lorentz force as a result of interacting magnetic field lines somehow "pushing" or exerting a force on a moving charged particle? If I understand correctly, what is happening is the field is interacting directly with the particle, and the particle's own field is of no consequence. I suppose the next step is to learn how this discussion applies to permanent magnets and the forces between them, but that is probably beyond my grasp!
$endgroup$
– M. A.
39 mins ago
$begingroup$
If you are referring to the “catapult field” mentioned in your newer question, I consider that a misconception. I don’t think you’ll find the concept of a catapult field in physics textbooks. (Where did you see it?) The only way classical magnetic fields interact is to superpose. For a charge in uniform motion, the self-force has no net effect and superposing it with the external field does not change this. You should think of the charge as directly interacting with the external field, and, if accelerating, also with its own field.
$endgroup$
– G. Smith
26 mins ago
$begingroup$
If you are referring to the “catapult field” mentioned in your newer question, I consider that a misconception. I don’t think you’ll find the concept of a catapult field in physics textbooks. (Where did you see it?) The only way classical magnetic fields interact is to superpose. For a charge in uniform motion, the self-force has no net effect and superposing it with the external field does not change this. You should think of the charge as directly interacting with the external field, and, if accelerating, also with its own field.
$endgroup$
– G. Smith
26 mins ago
$begingroup$
For other readers, the newer question I am referring to is physics.stackexchange.com/questions/459691/….
$endgroup$
– G. Smith
25 mins ago
$begingroup$
For other readers, the newer question I am referring to is physics.stackexchange.com/questions/459691/….
$endgroup$
– G. Smith
25 mins ago
add a comment |
M. A. is a new contributor. Be nice, and check out our Code of Conduct.
M. A. is a new contributor. Be nice, and check out our Code of Conduct.
M. A. is a new contributor. Be nice, and check out our Code of Conduct.
M. A. is a new contributor. Be nice, and check out our Code of Conduct.
Thanks for contributing an answer to Physics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f459674%2fforce-felt-by-a-moving-charge-due-to-its-own-magnetic-field%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
A moving proton can’t traverse a uniform magnetic field with uniform velocity, unless the field is parallel or antiparallel to the proton’s direction of motion. Otherwise, there will be a force making it accelerate.
$endgroup$
– G. Smith
2 hours ago