Transform pandas Data Frame to use for MultiLabelBinarizer
My question is: How can I transform a Data Frame like this to eventually use it in scikit's MulitLabelBinarizer:
d1 = {'ID':[1,2,3,4], 'km':[80,90,90,100], 'weight':[10,20,20,30], 'label':['A','B','C','D','E']}
df1 = pd.DataFrame(data=d1)
df1
ID km weight label
0 1 80 10 A
1 2 90 20 B
2 2 90 20 C
3 4 100 30 D
It should tourn ot like this:
d2 ={'km':[80,90,100], 'weight':[10,20,30], 'label':['A',('B','C'),'D']}
df2 = pd.DataFrame(data=d2)
df2
km weight label
0 80 10 A
1 90 20 (B, C)
2 100 30 D
So I can juse the data properly in the MultiLabelBinarizer:
from sklearn.preprocessing import MultiLabelBinarizer
mlb = MultiLabelBinarizer()
mlb.fit(df2['label'])
mlb.transform(df2['label'])
array([[1, 0, 0, 0],
[0, 1, 1, 0],
[0, 0, 0, 1]])
Note: the raw data has more than 1 million rows.
python dataframe scikit-learn transformation multilabel-classification
add a comment |
My question is: How can I transform a Data Frame like this to eventually use it in scikit's MulitLabelBinarizer:
d1 = {'ID':[1,2,3,4], 'km':[80,90,90,100], 'weight':[10,20,20,30], 'label':['A','B','C','D','E']}
df1 = pd.DataFrame(data=d1)
df1
ID km weight label
0 1 80 10 A
1 2 90 20 B
2 2 90 20 C
3 4 100 30 D
It should tourn ot like this:
d2 ={'km':[80,90,100], 'weight':[10,20,30], 'label':['A',('B','C'),'D']}
df2 = pd.DataFrame(data=d2)
df2
km weight label
0 80 10 A
1 90 20 (B, C)
2 100 30 D
So I can juse the data properly in the MultiLabelBinarizer:
from sklearn.preprocessing import MultiLabelBinarizer
mlb = MultiLabelBinarizer()
mlb.fit(df2['label'])
mlb.transform(df2['label'])
array([[1, 0, 0, 0],
[0, 1, 1, 0],
[0, 0, 0, 1]])
Note: the raw data has more than 1 million rows.
python dataframe scikit-learn transformation multilabel-classification
1
So what you want is to check for multiple occurrence in a dictionary? Maybe the title is not clear.
– mikuszefski
Nov 27 '18 at 7:49
yes, excuse me not beeing clear on that.
– josnas
Nov 27 '18 at 8:05
add a comment |
My question is: How can I transform a Data Frame like this to eventually use it in scikit's MulitLabelBinarizer:
d1 = {'ID':[1,2,3,4], 'km':[80,90,90,100], 'weight':[10,20,20,30], 'label':['A','B','C','D','E']}
df1 = pd.DataFrame(data=d1)
df1
ID km weight label
0 1 80 10 A
1 2 90 20 B
2 2 90 20 C
3 4 100 30 D
It should tourn ot like this:
d2 ={'km':[80,90,100], 'weight':[10,20,30], 'label':['A',('B','C'),'D']}
df2 = pd.DataFrame(data=d2)
df2
km weight label
0 80 10 A
1 90 20 (B, C)
2 100 30 D
So I can juse the data properly in the MultiLabelBinarizer:
from sklearn.preprocessing import MultiLabelBinarizer
mlb = MultiLabelBinarizer()
mlb.fit(df2['label'])
mlb.transform(df2['label'])
array([[1, 0, 0, 0],
[0, 1, 1, 0],
[0, 0, 0, 1]])
Note: the raw data has more than 1 million rows.
python dataframe scikit-learn transformation multilabel-classification
My question is: How can I transform a Data Frame like this to eventually use it in scikit's MulitLabelBinarizer:
d1 = {'ID':[1,2,3,4], 'km':[80,90,90,100], 'weight':[10,20,20,30], 'label':['A','B','C','D','E']}
df1 = pd.DataFrame(data=d1)
df1
ID km weight label
0 1 80 10 A
1 2 90 20 B
2 2 90 20 C
3 4 100 30 D
It should tourn ot like this:
d2 ={'km':[80,90,100], 'weight':[10,20,30], 'label':['A',('B','C'),'D']}
df2 = pd.DataFrame(data=d2)
df2
km weight label
0 80 10 A
1 90 20 (B, C)
2 100 30 D
So I can juse the data properly in the MultiLabelBinarizer:
from sklearn.preprocessing import MultiLabelBinarizer
mlb = MultiLabelBinarizer()
mlb.fit(df2['label'])
mlb.transform(df2['label'])
array([[1, 0, 0, 0],
[0, 1, 1, 0],
[0, 0, 0, 1]])
Note: the raw data has more than 1 million rows.
python dataframe scikit-learn transformation multilabel-classification
python dataframe scikit-learn transformation multilabel-classification
edited Nov 27 '18 at 8:00
josnas
asked Nov 27 '18 at 7:41
josnasjosnas
83
83
1
So what you want is to check for multiple occurrence in a dictionary? Maybe the title is not clear.
– mikuszefski
Nov 27 '18 at 7:49
yes, excuse me not beeing clear on that.
– josnas
Nov 27 '18 at 8:05
add a comment |
1
So what you want is to check for multiple occurrence in a dictionary? Maybe the title is not clear.
– mikuszefski
Nov 27 '18 at 7:49
yes, excuse me not beeing clear on that.
– josnas
Nov 27 '18 at 8:05
1
1
So what you want is to check for multiple occurrence in a dictionary? Maybe the title is not clear.
– mikuszefski
Nov 27 '18 at 7:49
So what you want is to check for multiple occurrence in a dictionary? Maybe the title is not clear.
– mikuszefski
Nov 27 '18 at 7:49
yes, excuse me not beeing clear on that.
– josnas
Nov 27 '18 at 8:05
yes, excuse me not beeing clear on that.
– josnas
Nov 27 '18 at 8:05
add a comment |
1 Answer
1
active
oldest
votes
I think you need this:
d1 = {'ID':[1,2,3,4], 'km':[80,90,90,100], 'weight':[10,20,20,30], 'label':['A','B','C','D']}
df1 = pd.DataFrame(data=d1)
#Groupby and get tuple, like you need
df2 = pd.DataFrame(df1.groupby(['km','weight'])['label'].apply(lambda x: tuple(x.values)))
df2.reset_index(inplace=True)
from sklearn.preprocessing import MultiLabelBinarizer
mlb = MultiLabelBinarizer()
mlb.fit(df2['label'])
mlb.transform(df2['label'])
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53494873%2ftransform-pandas-data-frame-to-use-for-multilabelbinarizer%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
I think you need this:
d1 = {'ID':[1,2,3,4], 'km':[80,90,90,100], 'weight':[10,20,20,30], 'label':['A','B','C','D']}
df1 = pd.DataFrame(data=d1)
#Groupby and get tuple, like you need
df2 = pd.DataFrame(df1.groupby(['km','weight'])['label'].apply(lambda x: tuple(x.values)))
df2.reset_index(inplace=True)
from sklearn.preprocessing import MultiLabelBinarizer
mlb = MultiLabelBinarizer()
mlb.fit(df2['label'])
mlb.transform(df2['label'])
add a comment |
I think you need this:
d1 = {'ID':[1,2,3,4], 'km':[80,90,90,100], 'weight':[10,20,20,30], 'label':['A','B','C','D']}
df1 = pd.DataFrame(data=d1)
#Groupby and get tuple, like you need
df2 = pd.DataFrame(df1.groupby(['km','weight'])['label'].apply(lambda x: tuple(x.values)))
df2.reset_index(inplace=True)
from sklearn.preprocessing import MultiLabelBinarizer
mlb = MultiLabelBinarizer()
mlb.fit(df2['label'])
mlb.transform(df2['label'])
add a comment |
I think you need this:
d1 = {'ID':[1,2,3,4], 'km':[80,90,90,100], 'weight':[10,20,20,30], 'label':['A','B','C','D']}
df1 = pd.DataFrame(data=d1)
#Groupby and get tuple, like you need
df2 = pd.DataFrame(df1.groupby(['km','weight'])['label'].apply(lambda x: tuple(x.values)))
df2.reset_index(inplace=True)
from sklearn.preprocessing import MultiLabelBinarizer
mlb = MultiLabelBinarizer()
mlb.fit(df2['label'])
mlb.transform(df2['label'])
I think you need this:
d1 = {'ID':[1,2,3,4], 'km':[80,90,90,100], 'weight':[10,20,20,30], 'label':['A','B','C','D']}
df1 = pd.DataFrame(data=d1)
#Groupby and get tuple, like you need
df2 = pd.DataFrame(df1.groupby(['km','weight'])['label'].apply(lambda x: tuple(x.values)))
df2.reset_index(inplace=True)
from sklearn.preprocessing import MultiLabelBinarizer
mlb = MultiLabelBinarizer()
mlb.fit(df2['label'])
mlb.transform(df2['label'])
answered Nov 27 '18 at 8:18
Rudolf MorkovskyiRudolf Morkovskyi
730117
730117
add a comment |
add a comment |
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53494873%2ftransform-pandas-data-frame-to-use-for-multilabelbinarizer%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
So what you want is to check for multiple occurrence in a dictionary? Maybe the title is not clear.
– mikuszefski
Nov 27 '18 at 7:49
yes, excuse me not beeing clear on that.
– josnas
Nov 27 '18 at 8:05