Finding sum to infinity












3












$begingroup$


I am trying to find what this value will converge to
$$sum_{n = 1}^{ infty}frac{n^2}{n!}$$



I tried using the Taylor series for $e^x$ but couldn’t figure out how to manipulate it to get the above expression, can someone help me out.



Edit: I have seen the solution, the manipulation required didn’t come to me, is there any resource that you guys can tell me about where I can find/practice more questions like this?










share|cite|improve this question











$endgroup$












  • $begingroup$
    In general, $$ sum_{n=0}^{infty} frac{n^k}{n!} = B_k e, $$ where $B_k$ is the $k$-th Bell-number. This is called the Dobinski's formula. This can be computed by expanding $n^k$ into the sum of falling factorials as in Olivier Oloa's answer.
    $endgroup$
    – Sangchul Lee
    14 mins ago


















3












$begingroup$


I am trying to find what this value will converge to
$$sum_{n = 1}^{ infty}frac{n^2}{n!}$$



I tried using the Taylor series for $e^x$ but couldn’t figure out how to manipulate it to get the above expression, can someone help me out.



Edit: I have seen the solution, the manipulation required didn’t come to me, is there any resource that you guys can tell me about where I can find/practice more questions like this?










share|cite|improve this question











$endgroup$












  • $begingroup$
    In general, $$ sum_{n=0}^{infty} frac{n^k}{n!} = B_k e, $$ where $B_k$ is the $k$-th Bell-number. This is called the Dobinski's formula. This can be computed by expanding $n^k$ into the sum of falling factorials as in Olivier Oloa's answer.
    $endgroup$
    – Sangchul Lee
    14 mins ago
















3












3








3


1



$begingroup$


I am trying to find what this value will converge to
$$sum_{n = 1}^{ infty}frac{n^2}{n!}$$



I tried using the Taylor series for $e^x$ but couldn’t figure out how to manipulate it to get the above expression, can someone help me out.



Edit: I have seen the solution, the manipulation required didn’t come to me, is there any resource that you guys can tell me about where I can find/practice more questions like this?










share|cite|improve this question











$endgroup$




I am trying to find what this value will converge to
$$sum_{n = 1}^{ infty}frac{n^2}{n!}$$



I tried using the Taylor series for $e^x$ but couldn’t figure out how to manipulate it to get the above expression, can someone help me out.



Edit: I have seen the solution, the manipulation required didn’t come to me, is there any resource that you guys can tell me about where I can find/practice more questions like this?







calculus sequences-and-series taylor-expansion






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 4 mins ago







user601297

















asked 25 mins ago









user601297user601297

37019




37019












  • $begingroup$
    In general, $$ sum_{n=0}^{infty} frac{n^k}{n!} = B_k e, $$ where $B_k$ is the $k$-th Bell-number. This is called the Dobinski's formula. This can be computed by expanding $n^k$ into the sum of falling factorials as in Olivier Oloa's answer.
    $endgroup$
    – Sangchul Lee
    14 mins ago




















  • $begingroup$
    In general, $$ sum_{n=0}^{infty} frac{n^k}{n!} = B_k e, $$ where $B_k$ is the $k$-th Bell-number. This is called the Dobinski's formula. This can be computed by expanding $n^k$ into the sum of falling factorials as in Olivier Oloa's answer.
    $endgroup$
    – Sangchul Lee
    14 mins ago


















$begingroup$
In general, $$ sum_{n=0}^{infty} frac{n^k}{n!} = B_k e, $$ where $B_k$ is the $k$-th Bell-number. This is called the Dobinski's formula. This can be computed by expanding $n^k$ into the sum of falling factorials as in Olivier Oloa's answer.
$endgroup$
– Sangchul Lee
14 mins ago






$begingroup$
In general, $$ sum_{n=0}^{infty} frac{n^k}{n!} = B_k e, $$ where $B_k$ is the $k$-th Bell-number. This is called the Dobinski's formula. This can be computed by expanding $n^k$ into the sum of falling factorials as in Olivier Oloa's answer.
$endgroup$
– Sangchul Lee
14 mins ago












2 Answers
2






active

oldest

votes


















6












$begingroup$

One may write
begin{align}
sum_{n = 1}^{ infty}frac{n^2}{n!}&=sum_{n = 1}^{ infty}frac{n(n-1)+n}{n!}
\\&=sum_{n = 1}^{ infty}frac{n(n-1)}{n!}+sum_{n = 1}^{ infty}frac{n}{n!}
\\&=sum_{n = 2}^{ infty}frac{1}{(n-2)!}+sum_{n = 1}^{ infty}frac{1}{(n-1)!}
end{align}
Can you take it from here?






share|cite|improve this answer









$endgroup$









  • 2




    $begingroup$
    Further hints: Since $e^1 = sum_{n=0}^{infty} frac{1}{n!}$, we have $$ sum_{n=2}^{infty} frac{1}{(n-2)!}= 1 + frac{1}{2} + frac{1}{3!} + .... = sum_{n=0}^{infty} frac{1}{n!} $$ and $$ sum_{n=1}^{infty} frac{1}{(n-1)!} = 1 + frac{1}{2} + frac{1}{3!} + .... = sum_{n=0}^{infty} frac{1}{n!} $$ So, ans: $boxed{ 2 mathrm{e} } $
    $endgroup$
    – Jimmy Sabater
    18 mins ago












  • $begingroup$
    Ok both expressions sum to $e$, i get it, thanks a lot
    $endgroup$
    – user601297
    11 mins ago



















2












$begingroup$

$$e^x-1=sum_{ngeq1}frac{x^n}{n!}$$
Taking $d/dx$ on both sides,
$$e^x=sum_{ngeq1}frac{n}{n!}x^{n-1}$$
Multiplying both sides by $x$,
$$xe^x=sum_{ngeq1}frac{n}{n!}x^n$$
Then taking $d/dx$ on both sides again,
$$(x+1)e^x=sum_{ngeq1}frac{n^2}{n!}x^{n-1}$$
Then plug in $x=1$:
$$sum_{ngeq1}frac{n^2}{n!}=2e$$






share|cite|improve this answer









$endgroup$









  • 1




    $begingroup$
    Amazing, this is exactly what I was looking for
    $endgroup$
    – user601297
    6 mins ago










  • $begingroup$
    @user601297 you are very welcome :)
    $endgroup$
    – clathratus
    4 mins ago











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3078955%2ffinding-sum-to-infinity%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























2 Answers
2






active

oldest

votes








2 Answers
2






active

oldest

votes









active

oldest

votes






active

oldest

votes









6












$begingroup$

One may write
begin{align}
sum_{n = 1}^{ infty}frac{n^2}{n!}&=sum_{n = 1}^{ infty}frac{n(n-1)+n}{n!}
\\&=sum_{n = 1}^{ infty}frac{n(n-1)}{n!}+sum_{n = 1}^{ infty}frac{n}{n!}
\\&=sum_{n = 2}^{ infty}frac{1}{(n-2)!}+sum_{n = 1}^{ infty}frac{1}{(n-1)!}
end{align}
Can you take it from here?






share|cite|improve this answer









$endgroup$









  • 2




    $begingroup$
    Further hints: Since $e^1 = sum_{n=0}^{infty} frac{1}{n!}$, we have $$ sum_{n=2}^{infty} frac{1}{(n-2)!}= 1 + frac{1}{2} + frac{1}{3!} + .... = sum_{n=0}^{infty} frac{1}{n!} $$ and $$ sum_{n=1}^{infty} frac{1}{(n-1)!} = 1 + frac{1}{2} + frac{1}{3!} + .... = sum_{n=0}^{infty} frac{1}{n!} $$ So, ans: $boxed{ 2 mathrm{e} } $
    $endgroup$
    – Jimmy Sabater
    18 mins ago












  • $begingroup$
    Ok both expressions sum to $e$, i get it, thanks a lot
    $endgroup$
    – user601297
    11 mins ago
















6












$begingroup$

One may write
begin{align}
sum_{n = 1}^{ infty}frac{n^2}{n!}&=sum_{n = 1}^{ infty}frac{n(n-1)+n}{n!}
\\&=sum_{n = 1}^{ infty}frac{n(n-1)}{n!}+sum_{n = 1}^{ infty}frac{n}{n!}
\\&=sum_{n = 2}^{ infty}frac{1}{(n-2)!}+sum_{n = 1}^{ infty}frac{1}{(n-1)!}
end{align}
Can you take it from here?






share|cite|improve this answer









$endgroup$









  • 2




    $begingroup$
    Further hints: Since $e^1 = sum_{n=0}^{infty} frac{1}{n!}$, we have $$ sum_{n=2}^{infty} frac{1}{(n-2)!}= 1 + frac{1}{2} + frac{1}{3!} + .... = sum_{n=0}^{infty} frac{1}{n!} $$ and $$ sum_{n=1}^{infty} frac{1}{(n-1)!} = 1 + frac{1}{2} + frac{1}{3!} + .... = sum_{n=0}^{infty} frac{1}{n!} $$ So, ans: $boxed{ 2 mathrm{e} } $
    $endgroup$
    – Jimmy Sabater
    18 mins ago












  • $begingroup$
    Ok both expressions sum to $e$, i get it, thanks a lot
    $endgroup$
    – user601297
    11 mins ago














6












6








6





$begingroup$

One may write
begin{align}
sum_{n = 1}^{ infty}frac{n^2}{n!}&=sum_{n = 1}^{ infty}frac{n(n-1)+n}{n!}
\\&=sum_{n = 1}^{ infty}frac{n(n-1)}{n!}+sum_{n = 1}^{ infty}frac{n}{n!}
\\&=sum_{n = 2}^{ infty}frac{1}{(n-2)!}+sum_{n = 1}^{ infty}frac{1}{(n-1)!}
end{align}
Can you take it from here?






share|cite|improve this answer









$endgroup$



One may write
begin{align}
sum_{n = 1}^{ infty}frac{n^2}{n!}&=sum_{n = 1}^{ infty}frac{n(n-1)+n}{n!}
\\&=sum_{n = 1}^{ infty}frac{n(n-1)}{n!}+sum_{n = 1}^{ infty}frac{n}{n!}
\\&=sum_{n = 2}^{ infty}frac{1}{(n-2)!}+sum_{n = 1}^{ infty}frac{1}{(n-1)!}
end{align}
Can you take it from here?







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered 20 mins ago









Olivier OloaOlivier Oloa

108k17176293




108k17176293








  • 2




    $begingroup$
    Further hints: Since $e^1 = sum_{n=0}^{infty} frac{1}{n!}$, we have $$ sum_{n=2}^{infty} frac{1}{(n-2)!}= 1 + frac{1}{2} + frac{1}{3!} + .... = sum_{n=0}^{infty} frac{1}{n!} $$ and $$ sum_{n=1}^{infty} frac{1}{(n-1)!} = 1 + frac{1}{2} + frac{1}{3!} + .... = sum_{n=0}^{infty} frac{1}{n!} $$ So, ans: $boxed{ 2 mathrm{e} } $
    $endgroup$
    – Jimmy Sabater
    18 mins ago












  • $begingroup$
    Ok both expressions sum to $e$, i get it, thanks a lot
    $endgroup$
    – user601297
    11 mins ago














  • 2




    $begingroup$
    Further hints: Since $e^1 = sum_{n=0}^{infty} frac{1}{n!}$, we have $$ sum_{n=2}^{infty} frac{1}{(n-2)!}= 1 + frac{1}{2} + frac{1}{3!} + .... = sum_{n=0}^{infty} frac{1}{n!} $$ and $$ sum_{n=1}^{infty} frac{1}{(n-1)!} = 1 + frac{1}{2} + frac{1}{3!} + .... = sum_{n=0}^{infty} frac{1}{n!} $$ So, ans: $boxed{ 2 mathrm{e} } $
    $endgroup$
    – Jimmy Sabater
    18 mins ago












  • $begingroup$
    Ok both expressions sum to $e$, i get it, thanks a lot
    $endgroup$
    – user601297
    11 mins ago








2




2




$begingroup$
Further hints: Since $e^1 = sum_{n=0}^{infty} frac{1}{n!}$, we have $$ sum_{n=2}^{infty} frac{1}{(n-2)!}= 1 + frac{1}{2} + frac{1}{3!} + .... = sum_{n=0}^{infty} frac{1}{n!} $$ and $$ sum_{n=1}^{infty} frac{1}{(n-1)!} = 1 + frac{1}{2} + frac{1}{3!} + .... = sum_{n=0}^{infty} frac{1}{n!} $$ So, ans: $boxed{ 2 mathrm{e} } $
$endgroup$
– Jimmy Sabater
18 mins ago






$begingroup$
Further hints: Since $e^1 = sum_{n=0}^{infty} frac{1}{n!}$, we have $$ sum_{n=2}^{infty} frac{1}{(n-2)!}= 1 + frac{1}{2} + frac{1}{3!} + .... = sum_{n=0}^{infty} frac{1}{n!} $$ and $$ sum_{n=1}^{infty} frac{1}{(n-1)!} = 1 + frac{1}{2} + frac{1}{3!} + .... = sum_{n=0}^{infty} frac{1}{n!} $$ So, ans: $boxed{ 2 mathrm{e} } $
$endgroup$
– Jimmy Sabater
18 mins ago














$begingroup$
Ok both expressions sum to $e$, i get it, thanks a lot
$endgroup$
– user601297
11 mins ago




$begingroup$
Ok both expressions sum to $e$, i get it, thanks a lot
$endgroup$
– user601297
11 mins ago











2












$begingroup$

$$e^x-1=sum_{ngeq1}frac{x^n}{n!}$$
Taking $d/dx$ on both sides,
$$e^x=sum_{ngeq1}frac{n}{n!}x^{n-1}$$
Multiplying both sides by $x$,
$$xe^x=sum_{ngeq1}frac{n}{n!}x^n$$
Then taking $d/dx$ on both sides again,
$$(x+1)e^x=sum_{ngeq1}frac{n^2}{n!}x^{n-1}$$
Then plug in $x=1$:
$$sum_{ngeq1}frac{n^2}{n!}=2e$$






share|cite|improve this answer









$endgroup$









  • 1




    $begingroup$
    Amazing, this is exactly what I was looking for
    $endgroup$
    – user601297
    6 mins ago










  • $begingroup$
    @user601297 you are very welcome :)
    $endgroup$
    – clathratus
    4 mins ago
















2












$begingroup$

$$e^x-1=sum_{ngeq1}frac{x^n}{n!}$$
Taking $d/dx$ on both sides,
$$e^x=sum_{ngeq1}frac{n}{n!}x^{n-1}$$
Multiplying both sides by $x$,
$$xe^x=sum_{ngeq1}frac{n}{n!}x^n$$
Then taking $d/dx$ on both sides again,
$$(x+1)e^x=sum_{ngeq1}frac{n^2}{n!}x^{n-1}$$
Then plug in $x=1$:
$$sum_{ngeq1}frac{n^2}{n!}=2e$$






share|cite|improve this answer









$endgroup$









  • 1




    $begingroup$
    Amazing, this is exactly what I was looking for
    $endgroup$
    – user601297
    6 mins ago










  • $begingroup$
    @user601297 you are very welcome :)
    $endgroup$
    – clathratus
    4 mins ago














2












2








2





$begingroup$

$$e^x-1=sum_{ngeq1}frac{x^n}{n!}$$
Taking $d/dx$ on both sides,
$$e^x=sum_{ngeq1}frac{n}{n!}x^{n-1}$$
Multiplying both sides by $x$,
$$xe^x=sum_{ngeq1}frac{n}{n!}x^n$$
Then taking $d/dx$ on both sides again,
$$(x+1)e^x=sum_{ngeq1}frac{n^2}{n!}x^{n-1}$$
Then plug in $x=1$:
$$sum_{ngeq1}frac{n^2}{n!}=2e$$






share|cite|improve this answer









$endgroup$



$$e^x-1=sum_{ngeq1}frac{x^n}{n!}$$
Taking $d/dx$ on both sides,
$$e^x=sum_{ngeq1}frac{n}{n!}x^{n-1}$$
Multiplying both sides by $x$,
$$xe^x=sum_{ngeq1}frac{n}{n!}x^n$$
Then taking $d/dx$ on both sides again,
$$(x+1)e^x=sum_{ngeq1}frac{n^2}{n!}x^{n-1}$$
Then plug in $x=1$:
$$sum_{ngeq1}frac{n^2}{n!}=2e$$







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered 10 mins ago









clathratusclathratus

3,651332




3,651332








  • 1




    $begingroup$
    Amazing, this is exactly what I was looking for
    $endgroup$
    – user601297
    6 mins ago










  • $begingroup$
    @user601297 you are very welcome :)
    $endgroup$
    – clathratus
    4 mins ago














  • 1




    $begingroup$
    Amazing, this is exactly what I was looking for
    $endgroup$
    – user601297
    6 mins ago










  • $begingroup$
    @user601297 you are very welcome :)
    $endgroup$
    – clathratus
    4 mins ago








1




1




$begingroup$
Amazing, this is exactly what I was looking for
$endgroup$
– user601297
6 mins ago




$begingroup$
Amazing, this is exactly what I was looking for
$endgroup$
– user601297
6 mins ago












$begingroup$
@user601297 you are very welcome :)
$endgroup$
– clathratus
4 mins ago




$begingroup$
@user601297 you are very welcome :)
$endgroup$
– clathratus
4 mins ago


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3078955%2ffinding-sum-to-infinity%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Contact image not getting when fetch all contact list from iPhone by CNContact

count number of partitions of a set with n elements into k subsets

A CLEAN and SIMPLE way to add appendices to Table of Contents and bookmarks