How can I make the r2 to be positive when predicting Bitcoin price using SVR?












0














I try to use SVR to predict Bitcoin price and I include more than 30 variables, but the prediction result is poor. How can I improve it or at least make the R2 to be positive?



from sklearn.svm import SVR
from sklearn.model_selection import GridSearchCV
import pandas as pd
from sklearn import preprocessing
from sklearn.metrics import mean_squared_error,r2_score
import numpy as np
def mean_absolute_percentage_error(y_true, y_pred):
y_true, y_pred = np.array(y_true), np.array(y_pred)
return np.mean(np.abs((y_true - y_pred) / y_true))

data=pd.read_excel(r'X:final.xlsx')
start_train='2014-01-01'
end_train='2017-12-31'
start_test='2018-01-01'
end_test='2018-12-31'
data=data.set_index('Date')
data_train=data.ix[start_train:end_train]
x_columns=list(data.drop((['next_price']),axis=1).columns)
y_column='next_price'

x_train=data_train[x_columns]
y_train=data_train[y_column]
x_train = preprocessing.scale(x_train)
data_test=data.ix[start_test:end_test]
x_test=data_test[x_columns]
y_test=data_test[y_column]
x_test = preprocessing.scale(x_test)

svr=SVR(kernel='linear')
svr.fit(x_train,y_train)
predictions=svr.predict(x_test)

print('MAPE: {0:.3f}'.format(mean_absolute_percentage_error(y_test,predictions)))
print('RMSE: {0:.3f}'.format((mean_squared_error(y_test,predictions))**0.5))
print('R^2: {0:.3f}'.format(r2_score(y_test,predictions)))


MAPE: 0.889;
RMSE: 7836.500;
R^2: -11.642



dates=data_test.index.values
plot_truth,=plt.plot(dates,y_test,'k')
plot_svr,=plt.plot(dates,predictions,'g')
plt.title('Real price VS Predicted price')
plt.show()


<code>[enter image description here][1]</code>



The original data is here[1]: https://drive.google.com/open?id=1Na0WB5zrCbafb4xnBM9ggRsm8p1LsvXi










share|improve this question



























    0














    I try to use SVR to predict Bitcoin price and I include more than 30 variables, but the prediction result is poor. How can I improve it or at least make the R2 to be positive?



    from sklearn.svm import SVR
    from sklearn.model_selection import GridSearchCV
    import pandas as pd
    from sklearn import preprocessing
    from sklearn.metrics import mean_squared_error,r2_score
    import numpy as np
    def mean_absolute_percentage_error(y_true, y_pred):
    y_true, y_pred = np.array(y_true), np.array(y_pred)
    return np.mean(np.abs((y_true - y_pred) / y_true))

    data=pd.read_excel(r'X:final.xlsx')
    start_train='2014-01-01'
    end_train='2017-12-31'
    start_test='2018-01-01'
    end_test='2018-12-31'
    data=data.set_index('Date')
    data_train=data.ix[start_train:end_train]
    x_columns=list(data.drop((['next_price']),axis=1).columns)
    y_column='next_price'

    x_train=data_train[x_columns]
    y_train=data_train[y_column]
    x_train = preprocessing.scale(x_train)
    data_test=data.ix[start_test:end_test]
    x_test=data_test[x_columns]
    y_test=data_test[y_column]
    x_test = preprocessing.scale(x_test)

    svr=SVR(kernel='linear')
    svr.fit(x_train,y_train)
    predictions=svr.predict(x_test)

    print('MAPE: {0:.3f}'.format(mean_absolute_percentage_error(y_test,predictions)))
    print('RMSE: {0:.3f}'.format((mean_squared_error(y_test,predictions))**0.5))
    print('R^2: {0:.3f}'.format(r2_score(y_test,predictions)))


    MAPE: 0.889;
    RMSE: 7836.500;
    R^2: -11.642



    dates=data_test.index.values
    plot_truth,=plt.plot(dates,y_test,'k')
    plot_svr,=plt.plot(dates,predictions,'g')
    plt.title('Real price VS Predicted price')
    plt.show()


    <code>[enter image description here][1]</code>



    The original data is here[1]: https://drive.google.com/open?id=1Na0WB5zrCbafb4xnBM9ggRsm8p1LsvXi










    share|improve this question

























      0












      0








      0







      I try to use SVR to predict Bitcoin price and I include more than 30 variables, but the prediction result is poor. How can I improve it or at least make the R2 to be positive?



      from sklearn.svm import SVR
      from sklearn.model_selection import GridSearchCV
      import pandas as pd
      from sklearn import preprocessing
      from sklearn.metrics import mean_squared_error,r2_score
      import numpy as np
      def mean_absolute_percentage_error(y_true, y_pred):
      y_true, y_pred = np.array(y_true), np.array(y_pred)
      return np.mean(np.abs((y_true - y_pred) / y_true))

      data=pd.read_excel(r'X:final.xlsx')
      start_train='2014-01-01'
      end_train='2017-12-31'
      start_test='2018-01-01'
      end_test='2018-12-31'
      data=data.set_index('Date')
      data_train=data.ix[start_train:end_train]
      x_columns=list(data.drop((['next_price']),axis=1).columns)
      y_column='next_price'

      x_train=data_train[x_columns]
      y_train=data_train[y_column]
      x_train = preprocessing.scale(x_train)
      data_test=data.ix[start_test:end_test]
      x_test=data_test[x_columns]
      y_test=data_test[y_column]
      x_test = preprocessing.scale(x_test)

      svr=SVR(kernel='linear')
      svr.fit(x_train,y_train)
      predictions=svr.predict(x_test)

      print('MAPE: {0:.3f}'.format(mean_absolute_percentage_error(y_test,predictions)))
      print('RMSE: {0:.3f}'.format((mean_squared_error(y_test,predictions))**0.5))
      print('R^2: {0:.3f}'.format(r2_score(y_test,predictions)))


      MAPE: 0.889;
      RMSE: 7836.500;
      R^2: -11.642



      dates=data_test.index.values
      plot_truth,=plt.plot(dates,y_test,'k')
      plot_svr,=plt.plot(dates,predictions,'g')
      plt.title('Real price VS Predicted price')
      plt.show()


      <code>[enter image description here][1]</code>



      The original data is here[1]: https://drive.google.com/open?id=1Na0WB5zrCbafb4xnBM9ggRsm8p1LsvXi










      share|improve this question













      I try to use SVR to predict Bitcoin price and I include more than 30 variables, but the prediction result is poor. How can I improve it or at least make the R2 to be positive?



      from sklearn.svm import SVR
      from sklearn.model_selection import GridSearchCV
      import pandas as pd
      from sklearn import preprocessing
      from sklearn.metrics import mean_squared_error,r2_score
      import numpy as np
      def mean_absolute_percentage_error(y_true, y_pred):
      y_true, y_pred = np.array(y_true), np.array(y_pred)
      return np.mean(np.abs((y_true - y_pred) / y_true))

      data=pd.read_excel(r'X:final.xlsx')
      start_train='2014-01-01'
      end_train='2017-12-31'
      start_test='2018-01-01'
      end_test='2018-12-31'
      data=data.set_index('Date')
      data_train=data.ix[start_train:end_train]
      x_columns=list(data.drop((['next_price']),axis=1).columns)
      y_column='next_price'

      x_train=data_train[x_columns]
      y_train=data_train[y_column]
      x_train = preprocessing.scale(x_train)
      data_test=data.ix[start_test:end_test]
      x_test=data_test[x_columns]
      y_test=data_test[y_column]
      x_test = preprocessing.scale(x_test)

      svr=SVR(kernel='linear')
      svr.fit(x_train,y_train)
      predictions=svr.predict(x_test)

      print('MAPE: {0:.3f}'.format(mean_absolute_percentage_error(y_test,predictions)))
      print('RMSE: {0:.3f}'.format((mean_squared_error(y_test,predictions))**0.5))
      print('R^2: {0:.3f}'.format(r2_score(y_test,predictions)))


      MAPE: 0.889;
      RMSE: 7836.500;
      R^2: -11.642



      dates=data_test.index.values
      plot_truth,=plt.plot(dates,y_test,'k')
      plot_svr,=plt.plot(dates,predictions,'g')
      plt.title('Real price VS Predicted price')
      plt.show()


      <code>[enter image description here][1]</code>



      The original data is here[1]: https://drive.google.com/open?id=1Na0WB5zrCbafb4xnBM9ggRsm8p1LsvXi







      svm bitcoin






      share|improve this question













      share|improve this question











      share|improve this question




      share|improve this question










      asked Nov 23 at 7:54









      wwhy

      347




      347





























          active

          oldest

          votes











          Your Answer






          StackExchange.ifUsing("editor", function () {
          StackExchange.using("externalEditor", function () {
          StackExchange.using("snippets", function () {
          StackExchange.snippets.init();
          });
          });
          }, "code-snippets");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "1"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53442634%2fhow-can-i-make-the-r2-to-be-positive-when-predicting-bitcoin-price-using-svr%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown






























          active

          oldest

          votes













          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Stack Overflow!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          To learn more, see our tips on writing great answers.





          Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


          Please pay close attention to the following guidance:


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53442634%2fhow-can-i-make-the-r2-to-be-positive-when-predicting-bitcoin-price-using-svr%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          A CLEAN and SIMPLE way to add appendices to Table of Contents and bookmarks

          Calculate evaluation metrics using cross_val_predict sklearn

          Insert data from modal to MySQL (multiple modal on website)