deep q network, loss decreasing, but performance not improving
up vote
-3
down vote
favorite
I'm quite new to deep Q networks and machine learning. I've been learning for a few months and I got stuck when trying to play with open AI gym with a deep reinforcement learning setup. Can anyone help explain whats wrong with my code and why the performance isn't increasing for the cartpole even though the loss is.
Code below
import gym
from collections import deque
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
env = gym.make("CartPole-v0")
# create new function for layers to use in the eval net and the target net
def layer(inputs, layersize, output, activation=None):
Weights = tf.Variable(tf.random_normal([layersize,output]))
bias = tf.Variable(tf.zeros([1,output])+0.1)
WX_B = tf.matmul(inputs,Weights) + bias
if activation:
output = activation(WX_B)
else:
output = WX_B
return output
'''PLACE HOLDERS'''
with tf.name_scope('inputs'):
states_PL_target = tf.placeholder(tf.float32,[None,4])
states_PL_eval = tf.placeholder(tf.float32,[None,4])
action_PL = tf.placeholder(tf.float32,[None,])
reward_pl = tf.placeholder(tf.float32,[None,1])
'''TARGET NET'''
with tf.variable_scope('target_net'):
target_l1 = layer(states_PL_target,4,32,activation=tf.nn.relu)
target_l2 = layer(target_l1,32,64,activation=tf.nn.relu)
target_l3 = layer(target_l2,64,32,activation=tf.nn.relu)
target_qvals= layer(target_l3,32,2)
with tf.variable_scope('qtarget'):
discount = tf.Variable(tf.zeros([1,2])+0.9)
gammaq = (discount * target_qvals)
target_net_output = tf.reduce_max(gammaq,axis=1) + reward_pl
####output of this should be reward + 0.9 of next q value
'''EVAL NET'''
with tf.variable_scope('eval_net'):
eval_l1 = layer(states_PL_eval,4,32,activation=tf.nn.relu)
eval_l2 = layer(eval_l1, 32, 64, activation=tf.nn.relu)
eval_l3 = layer(eval_l2,64,32,activation=tf.nn.relu)
qvals_evalnet = layer(eval_l3,32,2)
shape = tf.shape(action_PL)[0]
shape = tf.cast(shape, dtype=tf.float32)
shape = tf.range(shape, dtype=tf.float32)
action_indicies = tf.stack([shape, action_PL], axis=1)
action_indicies = tf.cast(action_indicies, dtype=tf.int32)
eval_net_output_wr_action = tf.gather_nd(params=qvals_evalnet,indices=action_indicies)
EVAL_loss = tf.reduce_mean(tf.squared_difference(target_net_output,eval_net_output_wr_action)) # tf.quared difference instead
train = tf.train.AdamOptimizer(0.001).minimize(EVAL_loss)
''' REPLACEMENT STEP'''
t_params = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='target_net')
e_params = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='eval_net')
replace = [tf.assign(t, e) for t, e in zip(t_params, e_params)]
observation = env.reset()
step = 0
prev_observation =
prev_observation2 =
runthrough =
cycle = 0
stepsss =
cycless =
batch_size = 20
memory_size = 1000
replace_step = 200
memory_storage =
memory = deque(maxlen=memory_size)
counter = 0
init = tf.global_variables_initializer()
sess = tf.Session()
sess.run(init)
epsilon = 0.0
runs = 100000
iterator = 0
for _ in range(runs):
# env.render()
if len(prev_observation) == 0:
action = env.action_space.sample() # your agent here (this takes random actions)
else:
if np.random.uniform() > epsilon:
action = np.random.choice([0,1])
else:
# target = sess.run(target_net_output, feed_dict={reward_pl:reward_array,states_PL_target:targetstates_array})
action = sess.run(qvals_evalnet, feed_dict={states_PL_eval:currentstates_array})
action = action[0]
action = action.argmax()
epsilon += 1/runs
observation, reward, done, info = env.step(action)
if step == 0:
prev_observation = np.array([0.,0.,0.,0.])
prev_observation2 = observation
elif step > 0:
prev_observation = prev_observation2
prev_observation2 = observation
reward = reward if not done else -1
reward_array = [reward,reward]
reward_array = np.array(reward_array)
reward_array = reward_array.reshape(2,1)
targetstates_array = np.array([observation,observation])
targetstates_array = targetstates_array.reshape(2,4)
currentstates_array = np.array([prev_observation,prev_observation])
currentstates_array = currentstates_array.reshape(2,4)
step += reward
counter += 1
'''LEARNING PART '''
memory.append(np.array([prev_observation,reward,action,observation]))
if len(memory) == memory_size:
memory_storage = np.array(memory)
if counter % replace_step == 0:
sess.run(replace)
if counter >= memory_size:
sample_index = np.random.choice(memory_size,size=batch_size)
if counter >= memory_size:
sample_train = memory_storage[sample_index]
target_states = [obs[3] for obs in sample_train]
eval_states = [obs[0] for obs in sample_train]
actionstaken = [obs[2] for obs in sample_train]
rewardgotten = [obs[1] for obs in sample_train]
target_states = np.array(target_states).astype(np.float32)
eval_states = np.array(eval_states).astype(np.float32)
actionstaken = np.array(actionstaken).astype(np.float32)
rewardgotten = np.array(rewardgotten).astype(np.float32)
rewardgotten = rewardgotten.reshape(-1, 1)
sess.run(train, feed_dict={states_PL_target:target_states,states_PL_eval:eval_states,action_PL:actionstaken,reward_pl:rewardgotten})
loss = sess.run(EVAL_loss,feed_dict={states_PL_target:target_states,states_PL_eval:eval_states,action_PL:actionstaken,reward_pl:rewardgotten})
if done:
env.reset()
if counter >= memory_size:
stepsss.append(step)
cycless.append(cycle)
step = 0
cycle += 1
# print(cycle)
if counter >= memory_size:
# pass
print(loss)
print(stepsss)
plt.plot(cycless,stepsss)
plt.show()
python neural-network deep-learning reinforcement-learning
add a comment |
up vote
-3
down vote
favorite
I'm quite new to deep Q networks and machine learning. I've been learning for a few months and I got stuck when trying to play with open AI gym with a deep reinforcement learning setup. Can anyone help explain whats wrong with my code and why the performance isn't increasing for the cartpole even though the loss is.
Code below
import gym
from collections import deque
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
env = gym.make("CartPole-v0")
# create new function for layers to use in the eval net and the target net
def layer(inputs, layersize, output, activation=None):
Weights = tf.Variable(tf.random_normal([layersize,output]))
bias = tf.Variable(tf.zeros([1,output])+0.1)
WX_B = tf.matmul(inputs,Weights) + bias
if activation:
output = activation(WX_B)
else:
output = WX_B
return output
'''PLACE HOLDERS'''
with tf.name_scope('inputs'):
states_PL_target = tf.placeholder(tf.float32,[None,4])
states_PL_eval = tf.placeholder(tf.float32,[None,4])
action_PL = tf.placeholder(tf.float32,[None,])
reward_pl = tf.placeholder(tf.float32,[None,1])
'''TARGET NET'''
with tf.variable_scope('target_net'):
target_l1 = layer(states_PL_target,4,32,activation=tf.nn.relu)
target_l2 = layer(target_l1,32,64,activation=tf.nn.relu)
target_l3 = layer(target_l2,64,32,activation=tf.nn.relu)
target_qvals= layer(target_l3,32,2)
with tf.variable_scope('qtarget'):
discount = tf.Variable(tf.zeros([1,2])+0.9)
gammaq = (discount * target_qvals)
target_net_output = tf.reduce_max(gammaq,axis=1) + reward_pl
####output of this should be reward + 0.9 of next q value
'''EVAL NET'''
with tf.variable_scope('eval_net'):
eval_l1 = layer(states_PL_eval,4,32,activation=tf.nn.relu)
eval_l2 = layer(eval_l1, 32, 64, activation=tf.nn.relu)
eval_l3 = layer(eval_l2,64,32,activation=tf.nn.relu)
qvals_evalnet = layer(eval_l3,32,2)
shape = tf.shape(action_PL)[0]
shape = tf.cast(shape, dtype=tf.float32)
shape = tf.range(shape, dtype=tf.float32)
action_indicies = tf.stack([shape, action_PL], axis=1)
action_indicies = tf.cast(action_indicies, dtype=tf.int32)
eval_net_output_wr_action = tf.gather_nd(params=qvals_evalnet,indices=action_indicies)
EVAL_loss = tf.reduce_mean(tf.squared_difference(target_net_output,eval_net_output_wr_action)) # tf.quared difference instead
train = tf.train.AdamOptimizer(0.001).minimize(EVAL_loss)
''' REPLACEMENT STEP'''
t_params = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='target_net')
e_params = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='eval_net')
replace = [tf.assign(t, e) for t, e in zip(t_params, e_params)]
observation = env.reset()
step = 0
prev_observation =
prev_observation2 =
runthrough =
cycle = 0
stepsss =
cycless =
batch_size = 20
memory_size = 1000
replace_step = 200
memory_storage =
memory = deque(maxlen=memory_size)
counter = 0
init = tf.global_variables_initializer()
sess = tf.Session()
sess.run(init)
epsilon = 0.0
runs = 100000
iterator = 0
for _ in range(runs):
# env.render()
if len(prev_observation) == 0:
action = env.action_space.sample() # your agent here (this takes random actions)
else:
if np.random.uniform() > epsilon:
action = np.random.choice([0,1])
else:
# target = sess.run(target_net_output, feed_dict={reward_pl:reward_array,states_PL_target:targetstates_array})
action = sess.run(qvals_evalnet, feed_dict={states_PL_eval:currentstates_array})
action = action[0]
action = action.argmax()
epsilon += 1/runs
observation, reward, done, info = env.step(action)
if step == 0:
prev_observation = np.array([0.,0.,0.,0.])
prev_observation2 = observation
elif step > 0:
prev_observation = prev_observation2
prev_observation2 = observation
reward = reward if not done else -1
reward_array = [reward,reward]
reward_array = np.array(reward_array)
reward_array = reward_array.reshape(2,1)
targetstates_array = np.array([observation,observation])
targetstates_array = targetstates_array.reshape(2,4)
currentstates_array = np.array([prev_observation,prev_observation])
currentstates_array = currentstates_array.reshape(2,4)
step += reward
counter += 1
'''LEARNING PART '''
memory.append(np.array([prev_observation,reward,action,observation]))
if len(memory) == memory_size:
memory_storage = np.array(memory)
if counter % replace_step == 0:
sess.run(replace)
if counter >= memory_size:
sample_index = np.random.choice(memory_size,size=batch_size)
if counter >= memory_size:
sample_train = memory_storage[sample_index]
target_states = [obs[3] for obs in sample_train]
eval_states = [obs[0] for obs in sample_train]
actionstaken = [obs[2] for obs in sample_train]
rewardgotten = [obs[1] for obs in sample_train]
target_states = np.array(target_states).astype(np.float32)
eval_states = np.array(eval_states).astype(np.float32)
actionstaken = np.array(actionstaken).astype(np.float32)
rewardgotten = np.array(rewardgotten).astype(np.float32)
rewardgotten = rewardgotten.reshape(-1, 1)
sess.run(train, feed_dict={states_PL_target:target_states,states_PL_eval:eval_states,action_PL:actionstaken,reward_pl:rewardgotten})
loss = sess.run(EVAL_loss,feed_dict={states_PL_target:target_states,states_PL_eval:eval_states,action_PL:actionstaken,reward_pl:rewardgotten})
if done:
env.reset()
if counter >= memory_size:
stepsss.append(step)
cycless.append(cycle)
step = 0
cycle += 1
# print(cycle)
if counter >= memory_size:
# pass
print(loss)
print(stepsss)
plt.plot(cycless,stepsss)
plt.show()
python neural-network deep-learning reinforcement-learning
add a comment |
up vote
-3
down vote
favorite
up vote
-3
down vote
favorite
I'm quite new to deep Q networks and machine learning. I've been learning for a few months and I got stuck when trying to play with open AI gym with a deep reinforcement learning setup. Can anyone help explain whats wrong with my code and why the performance isn't increasing for the cartpole even though the loss is.
Code below
import gym
from collections import deque
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
env = gym.make("CartPole-v0")
# create new function for layers to use in the eval net and the target net
def layer(inputs, layersize, output, activation=None):
Weights = tf.Variable(tf.random_normal([layersize,output]))
bias = tf.Variable(tf.zeros([1,output])+0.1)
WX_B = tf.matmul(inputs,Weights) + bias
if activation:
output = activation(WX_B)
else:
output = WX_B
return output
'''PLACE HOLDERS'''
with tf.name_scope('inputs'):
states_PL_target = tf.placeholder(tf.float32,[None,4])
states_PL_eval = tf.placeholder(tf.float32,[None,4])
action_PL = tf.placeholder(tf.float32,[None,])
reward_pl = tf.placeholder(tf.float32,[None,1])
'''TARGET NET'''
with tf.variable_scope('target_net'):
target_l1 = layer(states_PL_target,4,32,activation=tf.nn.relu)
target_l2 = layer(target_l1,32,64,activation=tf.nn.relu)
target_l3 = layer(target_l2,64,32,activation=tf.nn.relu)
target_qvals= layer(target_l3,32,2)
with tf.variable_scope('qtarget'):
discount = tf.Variable(tf.zeros([1,2])+0.9)
gammaq = (discount * target_qvals)
target_net_output = tf.reduce_max(gammaq,axis=1) + reward_pl
####output of this should be reward + 0.9 of next q value
'''EVAL NET'''
with tf.variable_scope('eval_net'):
eval_l1 = layer(states_PL_eval,4,32,activation=tf.nn.relu)
eval_l2 = layer(eval_l1, 32, 64, activation=tf.nn.relu)
eval_l3 = layer(eval_l2,64,32,activation=tf.nn.relu)
qvals_evalnet = layer(eval_l3,32,2)
shape = tf.shape(action_PL)[0]
shape = tf.cast(shape, dtype=tf.float32)
shape = tf.range(shape, dtype=tf.float32)
action_indicies = tf.stack([shape, action_PL], axis=1)
action_indicies = tf.cast(action_indicies, dtype=tf.int32)
eval_net_output_wr_action = tf.gather_nd(params=qvals_evalnet,indices=action_indicies)
EVAL_loss = tf.reduce_mean(tf.squared_difference(target_net_output,eval_net_output_wr_action)) # tf.quared difference instead
train = tf.train.AdamOptimizer(0.001).minimize(EVAL_loss)
''' REPLACEMENT STEP'''
t_params = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='target_net')
e_params = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='eval_net')
replace = [tf.assign(t, e) for t, e in zip(t_params, e_params)]
observation = env.reset()
step = 0
prev_observation =
prev_observation2 =
runthrough =
cycle = 0
stepsss =
cycless =
batch_size = 20
memory_size = 1000
replace_step = 200
memory_storage =
memory = deque(maxlen=memory_size)
counter = 0
init = tf.global_variables_initializer()
sess = tf.Session()
sess.run(init)
epsilon = 0.0
runs = 100000
iterator = 0
for _ in range(runs):
# env.render()
if len(prev_observation) == 0:
action = env.action_space.sample() # your agent here (this takes random actions)
else:
if np.random.uniform() > epsilon:
action = np.random.choice([0,1])
else:
# target = sess.run(target_net_output, feed_dict={reward_pl:reward_array,states_PL_target:targetstates_array})
action = sess.run(qvals_evalnet, feed_dict={states_PL_eval:currentstates_array})
action = action[0]
action = action.argmax()
epsilon += 1/runs
observation, reward, done, info = env.step(action)
if step == 0:
prev_observation = np.array([0.,0.,0.,0.])
prev_observation2 = observation
elif step > 0:
prev_observation = prev_observation2
prev_observation2 = observation
reward = reward if not done else -1
reward_array = [reward,reward]
reward_array = np.array(reward_array)
reward_array = reward_array.reshape(2,1)
targetstates_array = np.array([observation,observation])
targetstates_array = targetstates_array.reshape(2,4)
currentstates_array = np.array([prev_observation,prev_observation])
currentstates_array = currentstates_array.reshape(2,4)
step += reward
counter += 1
'''LEARNING PART '''
memory.append(np.array([prev_observation,reward,action,observation]))
if len(memory) == memory_size:
memory_storage = np.array(memory)
if counter % replace_step == 0:
sess.run(replace)
if counter >= memory_size:
sample_index = np.random.choice(memory_size,size=batch_size)
if counter >= memory_size:
sample_train = memory_storage[sample_index]
target_states = [obs[3] for obs in sample_train]
eval_states = [obs[0] for obs in sample_train]
actionstaken = [obs[2] for obs in sample_train]
rewardgotten = [obs[1] for obs in sample_train]
target_states = np.array(target_states).astype(np.float32)
eval_states = np.array(eval_states).astype(np.float32)
actionstaken = np.array(actionstaken).astype(np.float32)
rewardgotten = np.array(rewardgotten).astype(np.float32)
rewardgotten = rewardgotten.reshape(-1, 1)
sess.run(train, feed_dict={states_PL_target:target_states,states_PL_eval:eval_states,action_PL:actionstaken,reward_pl:rewardgotten})
loss = sess.run(EVAL_loss,feed_dict={states_PL_target:target_states,states_PL_eval:eval_states,action_PL:actionstaken,reward_pl:rewardgotten})
if done:
env.reset()
if counter >= memory_size:
stepsss.append(step)
cycless.append(cycle)
step = 0
cycle += 1
# print(cycle)
if counter >= memory_size:
# pass
print(loss)
print(stepsss)
plt.plot(cycless,stepsss)
plt.show()
python neural-network deep-learning reinforcement-learning
I'm quite new to deep Q networks and machine learning. I've been learning for a few months and I got stuck when trying to play with open AI gym with a deep reinforcement learning setup. Can anyone help explain whats wrong with my code and why the performance isn't increasing for the cartpole even though the loss is.
Code below
import gym
from collections import deque
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
env = gym.make("CartPole-v0")
# create new function for layers to use in the eval net and the target net
def layer(inputs, layersize, output, activation=None):
Weights = tf.Variable(tf.random_normal([layersize,output]))
bias = tf.Variable(tf.zeros([1,output])+0.1)
WX_B = tf.matmul(inputs,Weights) + bias
if activation:
output = activation(WX_B)
else:
output = WX_B
return output
'''PLACE HOLDERS'''
with tf.name_scope('inputs'):
states_PL_target = tf.placeholder(tf.float32,[None,4])
states_PL_eval = tf.placeholder(tf.float32,[None,4])
action_PL = tf.placeholder(tf.float32,[None,])
reward_pl = tf.placeholder(tf.float32,[None,1])
'''TARGET NET'''
with tf.variable_scope('target_net'):
target_l1 = layer(states_PL_target,4,32,activation=tf.nn.relu)
target_l2 = layer(target_l1,32,64,activation=tf.nn.relu)
target_l3 = layer(target_l2,64,32,activation=tf.nn.relu)
target_qvals= layer(target_l3,32,2)
with tf.variable_scope('qtarget'):
discount = tf.Variable(tf.zeros([1,2])+0.9)
gammaq = (discount * target_qvals)
target_net_output = tf.reduce_max(gammaq,axis=1) + reward_pl
####output of this should be reward + 0.9 of next q value
'''EVAL NET'''
with tf.variable_scope('eval_net'):
eval_l1 = layer(states_PL_eval,4,32,activation=tf.nn.relu)
eval_l2 = layer(eval_l1, 32, 64, activation=tf.nn.relu)
eval_l3 = layer(eval_l2,64,32,activation=tf.nn.relu)
qvals_evalnet = layer(eval_l3,32,2)
shape = tf.shape(action_PL)[0]
shape = tf.cast(shape, dtype=tf.float32)
shape = tf.range(shape, dtype=tf.float32)
action_indicies = tf.stack([shape, action_PL], axis=1)
action_indicies = tf.cast(action_indicies, dtype=tf.int32)
eval_net_output_wr_action = tf.gather_nd(params=qvals_evalnet,indices=action_indicies)
EVAL_loss = tf.reduce_mean(tf.squared_difference(target_net_output,eval_net_output_wr_action)) # tf.quared difference instead
train = tf.train.AdamOptimizer(0.001).minimize(EVAL_loss)
''' REPLACEMENT STEP'''
t_params = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='target_net')
e_params = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='eval_net')
replace = [tf.assign(t, e) for t, e in zip(t_params, e_params)]
observation = env.reset()
step = 0
prev_observation =
prev_observation2 =
runthrough =
cycle = 0
stepsss =
cycless =
batch_size = 20
memory_size = 1000
replace_step = 200
memory_storage =
memory = deque(maxlen=memory_size)
counter = 0
init = tf.global_variables_initializer()
sess = tf.Session()
sess.run(init)
epsilon = 0.0
runs = 100000
iterator = 0
for _ in range(runs):
# env.render()
if len(prev_observation) == 0:
action = env.action_space.sample() # your agent here (this takes random actions)
else:
if np.random.uniform() > epsilon:
action = np.random.choice([0,1])
else:
# target = sess.run(target_net_output, feed_dict={reward_pl:reward_array,states_PL_target:targetstates_array})
action = sess.run(qvals_evalnet, feed_dict={states_PL_eval:currentstates_array})
action = action[0]
action = action.argmax()
epsilon += 1/runs
observation, reward, done, info = env.step(action)
if step == 0:
prev_observation = np.array([0.,0.,0.,0.])
prev_observation2 = observation
elif step > 0:
prev_observation = prev_observation2
prev_observation2 = observation
reward = reward if not done else -1
reward_array = [reward,reward]
reward_array = np.array(reward_array)
reward_array = reward_array.reshape(2,1)
targetstates_array = np.array([observation,observation])
targetstates_array = targetstates_array.reshape(2,4)
currentstates_array = np.array([prev_observation,prev_observation])
currentstates_array = currentstates_array.reshape(2,4)
step += reward
counter += 1
'''LEARNING PART '''
memory.append(np.array([prev_observation,reward,action,observation]))
if len(memory) == memory_size:
memory_storage = np.array(memory)
if counter % replace_step == 0:
sess.run(replace)
if counter >= memory_size:
sample_index = np.random.choice(memory_size,size=batch_size)
if counter >= memory_size:
sample_train = memory_storage[sample_index]
target_states = [obs[3] for obs in sample_train]
eval_states = [obs[0] for obs in sample_train]
actionstaken = [obs[2] for obs in sample_train]
rewardgotten = [obs[1] for obs in sample_train]
target_states = np.array(target_states).astype(np.float32)
eval_states = np.array(eval_states).astype(np.float32)
actionstaken = np.array(actionstaken).astype(np.float32)
rewardgotten = np.array(rewardgotten).astype(np.float32)
rewardgotten = rewardgotten.reshape(-1, 1)
sess.run(train, feed_dict={states_PL_target:target_states,states_PL_eval:eval_states,action_PL:actionstaken,reward_pl:rewardgotten})
loss = sess.run(EVAL_loss,feed_dict={states_PL_target:target_states,states_PL_eval:eval_states,action_PL:actionstaken,reward_pl:rewardgotten})
if done:
env.reset()
if counter >= memory_size:
stepsss.append(step)
cycless.append(cycle)
step = 0
cycle += 1
# print(cycle)
if counter >= memory_size:
# pass
print(loss)
print(stepsss)
plt.plot(cycless,stepsss)
plt.show()
python neural-network deep-learning reinforcement-learning
python neural-network deep-learning reinforcement-learning
edited Nov 22 at 16:43
Skynet
4,27452640
4,27452640
asked Nov 22 at 13:43
Paulo Abalos
1
1
add a comment |
add a comment |
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53432336%2fdeep-q-network-loss-decreasing-but-performance-not-improving%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53432336%2fdeep-q-network-loss-decreasing-but-performance-not-improving%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown