New predictions when model contains a poly term












1















I am trying to predict y for a new vector of data x_new by hand. By "by hand" I mean not using the predict function (my actual model is an mcmc object which predict doesn't accept). This is fine with a simple model like this:



lm1 <- lm(Petal.Width ~ Petal.Length + Sepal.Width + Sepal.Length, data=iris)
x_new <- c(1, 1.4, 3.2, 5.2)
y <- x_new %*% lm1$coef


But I'm not sure how to proceed when my model looks like:



lm2 <- lm(Petal.Width ~ Petal.Length + Sepal.Width + poly(Sepal.Length,3), data=iris)


How exactly do I use the parameters from the poly() variable?










share|improve this question



























    1















    I am trying to predict y for a new vector of data x_new by hand. By "by hand" I mean not using the predict function (my actual model is an mcmc object which predict doesn't accept). This is fine with a simple model like this:



    lm1 <- lm(Petal.Width ~ Petal.Length + Sepal.Width + Sepal.Length, data=iris)
    x_new <- c(1, 1.4, 3.2, 5.2)
    y <- x_new %*% lm1$coef


    But I'm not sure how to proceed when my model looks like:



    lm2 <- lm(Petal.Width ~ Petal.Length + Sepal.Width + poly(Sepal.Length,3), data=iris)


    How exactly do I use the parameters from the poly() variable?










    share|improve this question

























      1












      1








      1








      I am trying to predict y for a new vector of data x_new by hand. By "by hand" I mean not using the predict function (my actual model is an mcmc object which predict doesn't accept). This is fine with a simple model like this:



      lm1 <- lm(Petal.Width ~ Petal.Length + Sepal.Width + Sepal.Length, data=iris)
      x_new <- c(1, 1.4, 3.2, 5.2)
      y <- x_new %*% lm1$coef


      But I'm not sure how to proceed when my model looks like:



      lm2 <- lm(Petal.Width ~ Petal.Length + Sepal.Width + poly(Sepal.Length,3), data=iris)


      How exactly do I use the parameters from the poly() variable?










      share|improve this question














      I am trying to predict y for a new vector of data x_new by hand. By "by hand" I mean not using the predict function (my actual model is an mcmc object which predict doesn't accept). This is fine with a simple model like this:



      lm1 <- lm(Petal.Width ~ Petal.Length + Sepal.Width + Sepal.Length, data=iris)
      x_new <- c(1, 1.4, 3.2, 5.2)
      y <- x_new %*% lm1$coef


      But I'm not sure how to proceed when my model looks like:



      lm2 <- lm(Petal.Width ~ Petal.Length + Sepal.Width + poly(Sepal.Length,3), data=iris)


      How exactly do I use the parameters from the poly() variable?







      r regression linear-regression prediction predict






      share|improve this question













      share|improve this question











      share|improve this question




      share|improve this question










      asked Nov 24 '18 at 22:20









      John FJohn F

      19211




      19211
























          1 Answer
          1






          active

          oldest

          votes


















          1














          You need to set poly(., raw=TRUE) so it uses raw rather than orthogonal polynomials. Compare, now they yield the same coefficients:



          lm2 <- lm(Petal.Width ~ Petal.Length + Sepal.Width + Sepal.Length +
          I(Sepal.Length^2) + I(Sepal.Length^3), data=iris)
          lm3 <- lm(Petal.Width ~ Petal.Length + poly(Sepal.Length, 3, raw=TRUE),
          data=iris)

          > coef(lm2)
          (Intercept) Petal.Length Sepal.Width Sepal.Length I(Sepal.Length^2) I(Sepal.Length^3)
          10.22126962 0.50889848 0.22999328 -5.81536464 0.98349473 -0.05626378
          > coef(lm3)
          (Intercept) Petal.Length Sepal.Width poly(Sepal.Length, 3, raw = TRUE)1
          10.22126962 0.50889848 0.22999328 -5.81536464
          poly(Sepal.Length, 3, raw = TRUE)2 poly(Sepal.Length, 3, raw = TRUE)3
          0.98349473 -0.05626378





          share|improve this answer























            Your Answer






            StackExchange.ifUsing("editor", function () {
            StackExchange.using("externalEditor", function () {
            StackExchange.using("snippets", function () {
            StackExchange.snippets.init();
            });
            });
            }, "code-snippets");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "1"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53462844%2fnew-predictions-when-model-contains-a-poly-term%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            1














            You need to set poly(., raw=TRUE) so it uses raw rather than orthogonal polynomials. Compare, now they yield the same coefficients:



            lm2 <- lm(Petal.Width ~ Petal.Length + Sepal.Width + Sepal.Length +
            I(Sepal.Length^2) + I(Sepal.Length^3), data=iris)
            lm3 <- lm(Petal.Width ~ Petal.Length + poly(Sepal.Length, 3, raw=TRUE),
            data=iris)

            > coef(lm2)
            (Intercept) Petal.Length Sepal.Width Sepal.Length I(Sepal.Length^2) I(Sepal.Length^3)
            10.22126962 0.50889848 0.22999328 -5.81536464 0.98349473 -0.05626378
            > coef(lm3)
            (Intercept) Petal.Length Sepal.Width poly(Sepal.Length, 3, raw = TRUE)1
            10.22126962 0.50889848 0.22999328 -5.81536464
            poly(Sepal.Length, 3, raw = TRUE)2 poly(Sepal.Length, 3, raw = TRUE)3
            0.98349473 -0.05626378





            share|improve this answer




























              1














              You need to set poly(., raw=TRUE) so it uses raw rather than orthogonal polynomials. Compare, now they yield the same coefficients:



              lm2 <- lm(Petal.Width ~ Petal.Length + Sepal.Width + Sepal.Length +
              I(Sepal.Length^2) + I(Sepal.Length^3), data=iris)
              lm3 <- lm(Petal.Width ~ Petal.Length + poly(Sepal.Length, 3, raw=TRUE),
              data=iris)

              > coef(lm2)
              (Intercept) Petal.Length Sepal.Width Sepal.Length I(Sepal.Length^2) I(Sepal.Length^3)
              10.22126962 0.50889848 0.22999328 -5.81536464 0.98349473 -0.05626378
              > coef(lm3)
              (Intercept) Petal.Length Sepal.Width poly(Sepal.Length, 3, raw = TRUE)1
              10.22126962 0.50889848 0.22999328 -5.81536464
              poly(Sepal.Length, 3, raw = TRUE)2 poly(Sepal.Length, 3, raw = TRUE)3
              0.98349473 -0.05626378





              share|improve this answer


























                1












                1








                1







                You need to set poly(., raw=TRUE) so it uses raw rather than orthogonal polynomials. Compare, now they yield the same coefficients:



                lm2 <- lm(Petal.Width ~ Petal.Length + Sepal.Width + Sepal.Length +
                I(Sepal.Length^2) + I(Sepal.Length^3), data=iris)
                lm3 <- lm(Petal.Width ~ Petal.Length + poly(Sepal.Length, 3, raw=TRUE),
                data=iris)

                > coef(lm2)
                (Intercept) Petal.Length Sepal.Width Sepal.Length I(Sepal.Length^2) I(Sepal.Length^3)
                10.22126962 0.50889848 0.22999328 -5.81536464 0.98349473 -0.05626378
                > coef(lm3)
                (Intercept) Petal.Length Sepal.Width poly(Sepal.Length, 3, raw = TRUE)1
                10.22126962 0.50889848 0.22999328 -5.81536464
                poly(Sepal.Length, 3, raw = TRUE)2 poly(Sepal.Length, 3, raw = TRUE)3
                0.98349473 -0.05626378





                share|improve this answer













                You need to set poly(., raw=TRUE) so it uses raw rather than orthogonal polynomials. Compare, now they yield the same coefficients:



                lm2 <- lm(Petal.Width ~ Petal.Length + Sepal.Width + Sepal.Length +
                I(Sepal.Length^2) + I(Sepal.Length^3), data=iris)
                lm3 <- lm(Petal.Width ~ Petal.Length + poly(Sepal.Length, 3, raw=TRUE),
                data=iris)

                > coef(lm2)
                (Intercept) Petal.Length Sepal.Width Sepal.Length I(Sepal.Length^2) I(Sepal.Length^3)
                10.22126962 0.50889848 0.22999328 -5.81536464 0.98349473 -0.05626378
                > coef(lm3)
                (Intercept) Petal.Length Sepal.Width poly(Sepal.Length, 3, raw = TRUE)1
                10.22126962 0.50889848 0.22999328 -5.81536464
                poly(Sepal.Length, 3, raw = TRUE)2 poly(Sepal.Length, 3, raw = TRUE)3
                0.98349473 -0.05626378






                share|improve this answer












                share|improve this answer



                share|improve this answer










                answered Nov 24 '18 at 22:33









                jay.sfjay.sf

                4,61321439




                4,61321439






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Stack Overflow!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53462844%2fnew-predictions-when-model-contains-a-poly-term%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    A CLEAN and SIMPLE way to add appendices to Table of Contents and bookmarks

                    Calculate evaluation metrics using cross_val_predict sklearn

                    Insert data from modal to MySQL (multiple modal on website)