New predictions when model contains a poly term
I am trying to predict y
for a new vector of data x_new
by hand. By "by hand" I mean not using the predict
function (my actual model is an mcmc
object which predict
doesn't accept). This is fine with a simple model like this:
lm1 <- lm(Petal.Width ~ Petal.Length + Sepal.Width + Sepal.Length, data=iris)
x_new <- c(1, 1.4, 3.2, 5.2)
y <- x_new %*% lm1$coef
But I'm not sure how to proceed when my model looks like:
lm2 <- lm(Petal.Width ~ Petal.Length + Sepal.Width + poly(Sepal.Length,3), data=iris)
How exactly do I use the parameters from the poly()
variable?
r regression linear-regression prediction predict
add a comment |
I am trying to predict y
for a new vector of data x_new
by hand. By "by hand" I mean not using the predict
function (my actual model is an mcmc
object which predict
doesn't accept). This is fine with a simple model like this:
lm1 <- lm(Petal.Width ~ Petal.Length + Sepal.Width + Sepal.Length, data=iris)
x_new <- c(1, 1.4, 3.2, 5.2)
y <- x_new %*% lm1$coef
But I'm not sure how to proceed when my model looks like:
lm2 <- lm(Petal.Width ~ Petal.Length + Sepal.Width + poly(Sepal.Length,3), data=iris)
How exactly do I use the parameters from the poly()
variable?
r regression linear-regression prediction predict
add a comment |
I am trying to predict y
for a new vector of data x_new
by hand. By "by hand" I mean not using the predict
function (my actual model is an mcmc
object which predict
doesn't accept). This is fine with a simple model like this:
lm1 <- lm(Petal.Width ~ Petal.Length + Sepal.Width + Sepal.Length, data=iris)
x_new <- c(1, 1.4, 3.2, 5.2)
y <- x_new %*% lm1$coef
But I'm not sure how to proceed when my model looks like:
lm2 <- lm(Petal.Width ~ Petal.Length + Sepal.Width + poly(Sepal.Length,3), data=iris)
How exactly do I use the parameters from the poly()
variable?
r regression linear-regression prediction predict
I am trying to predict y
for a new vector of data x_new
by hand. By "by hand" I mean not using the predict
function (my actual model is an mcmc
object which predict
doesn't accept). This is fine with a simple model like this:
lm1 <- lm(Petal.Width ~ Petal.Length + Sepal.Width + Sepal.Length, data=iris)
x_new <- c(1, 1.4, 3.2, 5.2)
y <- x_new %*% lm1$coef
But I'm not sure how to proceed when my model looks like:
lm2 <- lm(Petal.Width ~ Petal.Length + Sepal.Width + poly(Sepal.Length,3), data=iris)
How exactly do I use the parameters from the poly()
variable?
r regression linear-regression prediction predict
r regression linear-regression prediction predict
asked Nov 24 '18 at 22:20
John FJohn F
19211
19211
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
You need to set poly(., raw=TRUE)
so it uses raw rather than orthogonal polynomials. Compare, now they yield the same coefficients:
lm2 <- lm(Petal.Width ~ Petal.Length + Sepal.Width + Sepal.Length +
I(Sepal.Length^2) + I(Sepal.Length^3), data=iris)
lm3 <- lm(Petal.Width ~ Petal.Length + poly(Sepal.Length, 3, raw=TRUE),
data=iris)
> coef(lm2)
(Intercept) Petal.Length Sepal.Width Sepal.Length I(Sepal.Length^2) I(Sepal.Length^3)
10.22126962 0.50889848 0.22999328 -5.81536464 0.98349473 -0.05626378
> coef(lm3)
(Intercept) Petal.Length Sepal.Width poly(Sepal.Length, 3, raw = TRUE)1
10.22126962 0.50889848 0.22999328 -5.81536464
poly(Sepal.Length, 3, raw = TRUE)2 poly(Sepal.Length, 3, raw = TRUE)3
0.98349473 -0.05626378
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53462844%2fnew-predictions-when-model-contains-a-poly-term%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
You need to set poly(., raw=TRUE)
so it uses raw rather than orthogonal polynomials. Compare, now they yield the same coefficients:
lm2 <- lm(Petal.Width ~ Petal.Length + Sepal.Width + Sepal.Length +
I(Sepal.Length^2) + I(Sepal.Length^3), data=iris)
lm3 <- lm(Petal.Width ~ Petal.Length + poly(Sepal.Length, 3, raw=TRUE),
data=iris)
> coef(lm2)
(Intercept) Petal.Length Sepal.Width Sepal.Length I(Sepal.Length^2) I(Sepal.Length^3)
10.22126962 0.50889848 0.22999328 -5.81536464 0.98349473 -0.05626378
> coef(lm3)
(Intercept) Petal.Length Sepal.Width poly(Sepal.Length, 3, raw = TRUE)1
10.22126962 0.50889848 0.22999328 -5.81536464
poly(Sepal.Length, 3, raw = TRUE)2 poly(Sepal.Length, 3, raw = TRUE)3
0.98349473 -0.05626378
add a comment |
You need to set poly(., raw=TRUE)
so it uses raw rather than orthogonal polynomials. Compare, now they yield the same coefficients:
lm2 <- lm(Petal.Width ~ Petal.Length + Sepal.Width + Sepal.Length +
I(Sepal.Length^2) + I(Sepal.Length^3), data=iris)
lm3 <- lm(Petal.Width ~ Petal.Length + poly(Sepal.Length, 3, raw=TRUE),
data=iris)
> coef(lm2)
(Intercept) Petal.Length Sepal.Width Sepal.Length I(Sepal.Length^2) I(Sepal.Length^3)
10.22126962 0.50889848 0.22999328 -5.81536464 0.98349473 -0.05626378
> coef(lm3)
(Intercept) Petal.Length Sepal.Width poly(Sepal.Length, 3, raw = TRUE)1
10.22126962 0.50889848 0.22999328 -5.81536464
poly(Sepal.Length, 3, raw = TRUE)2 poly(Sepal.Length, 3, raw = TRUE)3
0.98349473 -0.05626378
add a comment |
You need to set poly(., raw=TRUE)
so it uses raw rather than orthogonal polynomials. Compare, now they yield the same coefficients:
lm2 <- lm(Petal.Width ~ Petal.Length + Sepal.Width + Sepal.Length +
I(Sepal.Length^2) + I(Sepal.Length^3), data=iris)
lm3 <- lm(Petal.Width ~ Petal.Length + poly(Sepal.Length, 3, raw=TRUE),
data=iris)
> coef(lm2)
(Intercept) Petal.Length Sepal.Width Sepal.Length I(Sepal.Length^2) I(Sepal.Length^3)
10.22126962 0.50889848 0.22999328 -5.81536464 0.98349473 -0.05626378
> coef(lm3)
(Intercept) Petal.Length Sepal.Width poly(Sepal.Length, 3, raw = TRUE)1
10.22126962 0.50889848 0.22999328 -5.81536464
poly(Sepal.Length, 3, raw = TRUE)2 poly(Sepal.Length, 3, raw = TRUE)3
0.98349473 -0.05626378
You need to set poly(., raw=TRUE)
so it uses raw rather than orthogonal polynomials. Compare, now they yield the same coefficients:
lm2 <- lm(Petal.Width ~ Petal.Length + Sepal.Width + Sepal.Length +
I(Sepal.Length^2) + I(Sepal.Length^3), data=iris)
lm3 <- lm(Petal.Width ~ Petal.Length + poly(Sepal.Length, 3, raw=TRUE),
data=iris)
> coef(lm2)
(Intercept) Petal.Length Sepal.Width Sepal.Length I(Sepal.Length^2) I(Sepal.Length^3)
10.22126962 0.50889848 0.22999328 -5.81536464 0.98349473 -0.05626378
> coef(lm3)
(Intercept) Petal.Length Sepal.Width poly(Sepal.Length, 3, raw = TRUE)1
10.22126962 0.50889848 0.22999328 -5.81536464
poly(Sepal.Length, 3, raw = TRUE)2 poly(Sepal.Length, 3, raw = TRUE)3
0.98349473 -0.05626378
answered Nov 24 '18 at 22:33
jay.sfjay.sf
4,61321439
4,61321439
add a comment |
add a comment |
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53462844%2fnew-predictions-when-model-contains-a-poly-term%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown