Input equations into Matlab for Simulink Function
up vote
0
down vote
favorite
I am currently working on an assignment where I need to create two different controllers in Matlab/Simulink for a robotic exoskeleton leg. The idea behind this is to compare both of them and see which controller is better at assisting a human wearing it. I am having a lot of trouble putting specific equations into a Matlab function block to then run in Simulink to get results for an AFO (adaptive frequency oscillator). The link has the equations I'm trying to put in and the following is the code I have so far:
function [pos_AFO, vel_AFO, acc_AFO, offset, omega, phi, ampl, phi1] = LHip(theta, eps, nu, dt, AFO_on)
t = 0;
% syms j
% M = 6;
% j = sym('j', [1 M]);
if t == 0
omega = 3*pi/2;
theta = 0;
phi = pi/2;
ampl = 0;
else
omega = omega*(t-1) + dt*(eps*offset*cos(phi1));
theta = theta*(t-1) + dt*(nu*offset);
phi = phi*(t-1) + dt*(omega + eps*offset*cos(phi*core(t-1)));
phi1 = phi*(t-1) + dt*(omega + eps*offset*cos(phi*core(t-1)));
ampl = ampl*(t-1) + dt*(nu*offset*sin(phi));
offset = theta - theta*(t-1) - sym(ampl*sin(phi), [1 M]);
end
pos_AFO = (theta*(t-1) + symsum(ampl*(t-1)*sin(phi* (t-1))))*AFO_on; %symsum needs input arguement for index M and range
vel_AFO = diff(pos_AFO)*AFO_on;
acc_AFO = diff(vel_AFO)*AFO_on;
end
https://www.pastepic.xyz/image/pg4mP
Essentially, I don't know how to do the subscripts, sigma, or the (t+1) function. Any help is appreciated as this is due next week
matlab simulink
add a comment |
up vote
0
down vote
favorite
I am currently working on an assignment where I need to create two different controllers in Matlab/Simulink for a robotic exoskeleton leg. The idea behind this is to compare both of them and see which controller is better at assisting a human wearing it. I am having a lot of trouble putting specific equations into a Matlab function block to then run in Simulink to get results for an AFO (adaptive frequency oscillator). The link has the equations I'm trying to put in and the following is the code I have so far:
function [pos_AFO, vel_AFO, acc_AFO, offset, omega, phi, ampl, phi1] = LHip(theta, eps, nu, dt, AFO_on)
t = 0;
% syms j
% M = 6;
% j = sym('j', [1 M]);
if t == 0
omega = 3*pi/2;
theta = 0;
phi = pi/2;
ampl = 0;
else
omega = omega*(t-1) + dt*(eps*offset*cos(phi1));
theta = theta*(t-1) + dt*(nu*offset);
phi = phi*(t-1) + dt*(omega + eps*offset*cos(phi*core(t-1)));
phi1 = phi*(t-1) + dt*(omega + eps*offset*cos(phi*core(t-1)));
ampl = ampl*(t-1) + dt*(nu*offset*sin(phi));
offset = theta - theta*(t-1) - sym(ampl*sin(phi), [1 M]);
end
pos_AFO = (theta*(t-1) + symsum(ampl*(t-1)*sin(phi* (t-1))))*AFO_on; %symsum needs input arguement for index M and range
vel_AFO = diff(pos_AFO)*AFO_on;
acc_AFO = diff(vel_AFO)*AFO_on;
end
https://www.pastepic.xyz/image/pg4mP
Essentially, I don't know how to do the subscripts, sigma, or the (t+1) function. Any help is appreciated as this is due next week
matlab simulink
Welcome to StackOverflow. Unfortunately, the posted link does not work
– Michael C.
Nov 22 at 0:08
My bad I thought it would work. It should hopefully work now
– Sam A
Nov 22 at 2:42
You should use the previous value oftheta
,ampl
, andphi
, not multiply them by(t-1)
– SRhm
Nov 22 at 2:54
How would I use the previous values? What line of code or function would let that happen?
– Sam A
Nov 22 at 3:41
add a comment |
up vote
0
down vote
favorite
up vote
0
down vote
favorite
I am currently working on an assignment where I need to create two different controllers in Matlab/Simulink for a robotic exoskeleton leg. The idea behind this is to compare both of them and see which controller is better at assisting a human wearing it. I am having a lot of trouble putting specific equations into a Matlab function block to then run in Simulink to get results for an AFO (adaptive frequency oscillator). The link has the equations I'm trying to put in and the following is the code I have so far:
function [pos_AFO, vel_AFO, acc_AFO, offset, omega, phi, ampl, phi1] = LHip(theta, eps, nu, dt, AFO_on)
t = 0;
% syms j
% M = 6;
% j = sym('j', [1 M]);
if t == 0
omega = 3*pi/2;
theta = 0;
phi = pi/2;
ampl = 0;
else
omega = omega*(t-1) + dt*(eps*offset*cos(phi1));
theta = theta*(t-1) + dt*(nu*offset);
phi = phi*(t-1) + dt*(omega + eps*offset*cos(phi*core(t-1)));
phi1 = phi*(t-1) + dt*(omega + eps*offset*cos(phi*core(t-1)));
ampl = ampl*(t-1) + dt*(nu*offset*sin(phi));
offset = theta - theta*(t-1) - sym(ampl*sin(phi), [1 M]);
end
pos_AFO = (theta*(t-1) + symsum(ampl*(t-1)*sin(phi* (t-1))))*AFO_on; %symsum needs input arguement for index M and range
vel_AFO = diff(pos_AFO)*AFO_on;
acc_AFO = diff(vel_AFO)*AFO_on;
end
https://www.pastepic.xyz/image/pg4mP
Essentially, I don't know how to do the subscripts, sigma, or the (t+1) function. Any help is appreciated as this is due next week
matlab simulink
I am currently working on an assignment where I need to create two different controllers in Matlab/Simulink for a robotic exoskeleton leg. The idea behind this is to compare both of them and see which controller is better at assisting a human wearing it. I am having a lot of trouble putting specific equations into a Matlab function block to then run in Simulink to get results for an AFO (adaptive frequency oscillator). The link has the equations I'm trying to put in and the following is the code I have so far:
function [pos_AFO, vel_AFO, acc_AFO, offset, omega, phi, ampl, phi1] = LHip(theta, eps, nu, dt, AFO_on)
t = 0;
% syms j
% M = 6;
% j = sym('j', [1 M]);
if t == 0
omega = 3*pi/2;
theta = 0;
phi = pi/2;
ampl = 0;
else
omega = omega*(t-1) + dt*(eps*offset*cos(phi1));
theta = theta*(t-1) + dt*(nu*offset);
phi = phi*(t-1) + dt*(omega + eps*offset*cos(phi*core(t-1)));
phi1 = phi*(t-1) + dt*(omega + eps*offset*cos(phi*core(t-1)));
ampl = ampl*(t-1) + dt*(nu*offset*sin(phi));
offset = theta - theta*(t-1) - sym(ampl*sin(phi), [1 M]);
end
pos_AFO = (theta*(t-1) + symsum(ampl*(t-1)*sin(phi* (t-1))))*AFO_on; %symsum needs input arguement for index M and range
vel_AFO = diff(pos_AFO)*AFO_on;
acc_AFO = diff(vel_AFO)*AFO_on;
end
https://www.pastepic.xyz/image/pg4mP
Essentially, I don't know how to do the subscripts, sigma, or the (t+1) function. Any help is appreciated as this is due next week
matlab simulink
matlab simulink
edited Nov 22 at 2:41
asked Nov 21 at 22:47
Sam A
12
12
Welcome to StackOverflow. Unfortunately, the posted link does not work
– Michael C.
Nov 22 at 0:08
My bad I thought it would work. It should hopefully work now
– Sam A
Nov 22 at 2:42
You should use the previous value oftheta
,ampl
, andphi
, not multiply them by(t-1)
– SRhm
Nov 22 at 2:54
How would I use the previous values? What line of code or function would let that happen?
– Sam A
Nov 22 at 3:41
add a comment |
Welcome to StackOverflow. Unfortunately, the posted link does not work
– Michael C.
Nov 22 at 0:08
My bad I thought it would work. It should hopefully work now
– Sam A
Nov 22 at 2:42
You should use the previous value oftheta
,ampl
, andphi
, not multiply them by(t-1)
– SRhm
Nov 22 at 2:54
How would I use the previous values? What line of code or function would let that happen?
– Sam A
Nov 22 at 3:41
Welcome to StackOverflow. Unfortunately, the posted link does not work
– Michael C.
Nov 22 at 0:08
Welcome to StackOverflow. Unfortunately, the posted link does not work
– Michael C.
Nov 22 at 0:08
My bad I thought it would work. It should hopefully work now
– Sam A
Nov 22 at 2:42
My bad I thought it would work. It should hopefully work now
– Sam A
Nov 22 at 2:42
You should use the previous value of
theta
, ampl
, and phi
, not multiply them by (t-1)
– SRhm
Nov 22 at 2:54
You should use the previous value of
theta
, ampl
, and phi
, not multiply them by (t-1)
– SRhm
Nov 22 at 2:54
How would I use the previous values? What line of code or function would let that happen?
– Sam A
Nov 22 at 3:41
How would I use the previous values? What line of code or function would let that happen?
– Sam A
Nov 22 at 3:41
add a comment |
1 Answer
1
active
oldest
votes
up vote
1
down vote
You are looking to find the result of an adaptive process therefore your algorithm needs to consider time as it progresses. There is no (t-1) operator as such. It is just a mathematical notation telling you that you need to reuse an old value to calculate a new value.
omega_old=0;
theta_old=0;
% initialize the rest of your variables
for [t=1:N]
omega[t] = omega_old + % here is the rest of your omega calculation
theta[t] = theta_old + % ...
% more code .....
% remember your old values for next iteration
omega_old = omega[t];
theta_old = theta[t];
end
I think you forgot to apply the modulo operation to phi judging by the original formula you linked. As a general rule, design your code in small pieces, make sure the output of each piece makes sense and then combine all pieces and make sure the overall result is correct.
add a comment |
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
1
down vote
You are looking to find the result of an adaptive process therefore your algorithm needs to consider time as it progresses. There is no (t-1) operator as such. It is just a mathematical notation telling you that you need to reuse an old value to calculate a new value.
omega_old=0;
theta_old=0;
% initialize the rest of your variables
for [t=1:N]
omega[t] = omega_old + % here is the rest of your omega calculation
theta[t] = theta_old + % ...
% more code .....
% remember your old values for next iteration
omega_old = omega[t];
theta_old = theta[t];
end
I think you forgot to apply the modulo operation to phi judging by the original formula you linked. As a general rule, design your code in small pieces, make sure the output of each piece makes sense and then combine all pieces and make sure the overall result is correct.
add a comment |
up vote
1
down vote
You are looking to find the result of an adaptive process therefore your algorithm needs to consider time as it progresses. There is no (t-1) operator as such. It is just a mathematical notation telling you that you need to reuse an old value to calculate a new value.
omega_old=0;
theta_old=0;
% initialize the rest of your variables
for [t=1:N]
omega[t] = omega_old + % here is the rest of your omega calculation
theta[t] = theta_old + % ...
% more code .....
% remember your old values for next iteration
omega_old = omega[t];
theta_old = theta[t];
end
I think you forgot to apply the modulo operation to phi judging by the original formula you linked. As a general rule, design your code in small pieces, make sure the output of each piece makes sense and then combine all pieces and make sure the overall result is correct.
add a comment |
up vote
1
down vote
up vote
1
down vote
You are looking to find the result of an adaptive process therefore your algorithm needs to consider time as it progresses. There is no (t-1) operator as such. It is just a mathematical notation telling you that you need to reuse an old value to calculate a new value.
omega_old=0;
theta_old=0;
% initialize the rest of your variables
for [t=1:N]
omega[t] = omega_old + % here is the rest of your omega calculation
theta[t] = theta_old + % ...
% more code .....
% remember your old values for next iteration
omega_old = omega[t];
theta_old = theta[t];
end
I think you forgot to apply the modulo operation to phi judging by the original formula you linked. As a general rule, design your code in small pieces, make sure the output of each piece makes sense and then combine all pieces and make sure the overall result is correct.
You are looking to find the result of an adaptive process therefore your algorithm needs to consider time as it progresses. There is no (t-1) operator as such. It is just a mathematical notation telling you that you need to reuse an old value to calculate a new value.
omega_old=0;
theta_old=0;
% initialize the rest of your variables
for [t=1:N]
omega[t] = omega_old + % here is the rest of your omega calculation
theta[t] = theta_old + % ...
% more code .....
% remember your old values for next iteration
omega_old = omega[t];
theta_old = theta[t];
end
I think you forgot to apply the modulo operation to phi judging by the original formula you linked. As a general rule, design your code in small pieces, make sure the output of each piece makes sense and then combine all pieces and make sure the overall result is correct.
edited Nov 23 at 23:16
answered Nov 23 at 18:42
Michael C.
10210
10210
add a comment |
add a comment |
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53421499%2finput-equations-into-matlab-for-simulink-function%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Welcome to StackOverflow. Unfortunately, the posted link does not work
– Michael C.
Nov 22 at 0:08
My bad I thought it would work. It should hopefully work now
– Sam A
Nov 22 at 2:42
You should use the previous value of
theta
,ampl
, andphi
, not multiply them by(t-1)
– SRhm
Nov 22 at 2:54
How would I use the previous values? What line of code or function would let that happen?
– Sam A
Nov 22 at 3:41