What number comes next in this sequence?
up vote
1
down vote
favorite
$4, 15, 13, 7, 22, -1, 31, -9, 40, -17, 49$.
What comes next? The answer is $-25$, but why?
sequences-and-series pattern-recognition
New contributor
add a comment |
up vote
1
down vote
favorite
$4, 15, 13, 7, 22, -1, 31, -9, 40, -17, 49$.
What comes next? The answer is $-25$, but why?
sequences-and-series pattern-recognition
New contributor
9
My answer is 42. The reason is that I like the number 42. And there is no one who can prove me wrong. That being said, if I were to try to read the mind of whoever made this problem, I would look at every other term.
– Arthur
2 hours ago
1
Any finite sequence of integers can be continued any way you like. Sometimes there are patterns that suggest that one continuation is more natural than another. I see no such pattern here. If you [edit' the question to tell us where the sequence comes from we may be able to hlep. Otherwise the question will probably be closed.
– Ethan Bolker
2 hours ago
add a comment |
up vote
1
down vote
favorite
up vote
1
down vote
favorite
$4, 15, 13, 7, 22, -1, 31, -9, 40, -17, 49$.
What comes next? The answer is $-25$, but why?
sequences-and-series pattern-recognition
New contributor
$4, 15, 13, 7, 22, -1, 31, -9, 40, -17, 49$.
What comes next? The answer is $-25$, but why?
sequences-and-series pattern-recognition
sequences-and-series pattern-recognition
New contributor
New contributor
New contributor
asked 2 hours ago
stackofhay42
1163
1163
New contributor
New contributor
9
My answer is 42. The reason is that I like the number 42. And there is no one who can prove me wrong. That being said, if I were to try to read the mind of whoever made this problem, I would look at every other term.
– Arthur
2 hours ago
1
Any finite sequence of integers can be continued any way you like. Sometimes there are patterns that suggest that one continuation is more natural than another. I see no such pattern here. If you [edit' the question to tell us where the sequence comes from we may be able to hlep. Otherwise the question will probably be closed.
– Ethan Bolker
2 hours ago
add a comment |
9
My answer is 42. The reason is that I like the number 42. And there is no one who can prove me wrong. That being said, if I were to try to read the mind of whoever made this problem, I would look at every other term.
– Arthur
2 hours ago
1
Any finite sequence of integers can be continued any way you like. Sometimes there are patterns that suggest that one continuation is more natural than another. I see no such pattern here. If you [edit' the question to tell us where the sequence comes from we may be able to hlep. Otherwise the question will probably be closed.
– Ethan Bolker
2 hours ago
9
9
My answer is 42. The reason is that I like the number 42. And there is no one who can prove me wrong. That being said, if I were to try to read the mind of whoever made this problem, I would look at every other term.
– Arthur
2 hours ago
My answer is 42. The reason is that I like the number 42. And there is no one who can prove me wrong. That being said, if I were to try to read the mind of whoever made this problem, I would look at every other term.
– Arthur
2 hours ago
1
1
Any finite sequence of integers can be continued any way you like. Sometimes there are patterns that suggest that one continuation is more natural than another. I see no such pattern here. If you [edit' the question to tell us where the sequence comes from we may be able to hlep. Otherwise the question will probably be closed.
– Ethan Bolker
2 hours ago
Any finite sequence of integers can be continued any way you like. Sometimes there are patterns that suggest that one continuation is more natural than another. I see no such pattern here. If you [edit' the question to tell us where the sequence comes from we may be able to hlep. Otherwise the question will probably be closed.
– Ethan Bolker
2 hours ago
add a comment |
2 Answers
2
active
oldest
votes
up vote
10
down vote
accepted
Break up the sequence into the even ordered terms and odd ordered.
2
Wow! I was looking for some very complicated patterns, and it is actually so easy.
– Mark
2 hours ago
add a comment |
up vote
3
down vote
- Firs observation, first term and second term add up to 19, third and fourth add to 20, fifth and sixth add to 21 and so on..
According to that, the the next number is $49+x = 24 implies x = -25$
- Second observation, second and third terms add to 28, the fourth and fifth add to 29 and so on...
Therefore, you can generate the next number using these two observations anywhere in the sequence.
I know this is not the best way to predict the next number. However, it is not a bad try.
:)
add a comment |
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
10
down vote
accepted
Break up the sequence into the even ordered terms and odd ordered.
2
Wow! I was looking for some very complicated patterns, and it is actually so easy.
– Mark
2 hours ago
add a comment |
up vote
10
down vote
accepted
Break up the sequence into the even ordered terms and odd ordered.
2
Wow! I was looking for some very complicated patterns, and it is actually so easy.
– Mark
2 hours ago
add a comment |
up vote
10
down vote
accepted
up vote
10
down vote
accepted
Break up the sequence into the even ordered terms and odd ordered.
Break up the sequence into the even ordered terms and odd ordered.
answered 2 hours ago
TurlocTheRed
723110
723110
2
Wow! I was looking for some very complicated patterns, and it is actually so easy.
– Mark
2 hours ago
add a comment |
2
Wow! I was looking for some very complicated patterns, and it is actually so easy.
– Mark
2 hours ago
2
2
Wow! I was looking for some very complicated patterns, and it is actually so easy.
– Mark
2 hours ago
Wow! I was looking for some very complicated patterns, and it is actually so easy.
– Mark
2 hours ago
add a comment |
up vote
3
down vote
- Firs observation, first term and second term add up to 19, third and fourth add to 20, fifth and sixth add to 21 and so on..
According to that, the the next number is $49+x = 24 implies x = -25$
- Second observation, second and third terms add to 28, the fourth and fifth add to 29 and so on...
Therefore, you can generate the next number using these two observations anywhere in the sequence.
I know this is not the best way to predict the next number. However, it is not a bad try.
:)
add a comment |
up vote
3
down vote
- Firs observation, first term and second term add up to 19, third and fourth add to 20, fifth and sixth add to 21 and so on..
According to that, the the next number is $49+x = 24 implies x = -25$
- Second observation, second and third terms add to 28, the fourth and fifth add to 29 and so on...
Therefore, you can generate the next number using these two observations anywhere in the sequence.
I know this is not the best way to predict the next number. However, it is not a bad try.
:)
add a comment |
up vote
3
down vote
up vote
3
down vote
- Firs observation, first term and second term add up to 19, third and fourth add to 20, fifth and sixth add to 21 and so on..
According to that, the the next number is $49+x = 24 implies x = -25$
- Second observation, second and third terms add to 28, the fourth and fifth add to 29 and so on...
Therefore, you can generate the next number using these two observations anywhere in the sequence.
I know this is not the best way to predict the next number. However, it is not a bad try.
:)
- Firs observation, first term and second term add up to 19, third and fourth add to 20, fifth and sixth add to 21 and so on..
According to that, the the next number is $49+x = 24 implies x = -25$
- Second observation, second and third terms add to 28, the fourth and fifth add to 29 and so on...
Therefore, you can generate the next number using these two observations anywhere in the sequence.
I know this is not the best way to predict the next number. However, it is not a bad try.
:)
edited 1 hour ago
answered 2 hours ago
Maged Saeed
527315
527315
add a comment |
add a comment |
stackofhay42 is a new contributor. Be nice, and check out our Code of Conduct.
stackofhay42 is a new contributor. Be nice, and check out our Code of Conduct.
stackofhay42 is a new contributor. Be nice, and check out our Code of Conduct.
stackofhay42 is a new contributor. Be nice, and check out our Code of Conduct.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3012130%2fwhat-number-comes-next-in-this-sequence%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
9
My answer is 42. The reason is that I like the number 42. And there is no one who can prove me wrong. That being said, if I were to try to read the mind of whoever made this problem, I would look at every other term.
– Arthur
2 hours ago
1
Any finite sequence of integers can be continued any way you like. Sometimes there are patterns that suggest that one continuation is more natural than another. I see no such pattern here. If you [edit' the question to tell us where the sequence comes from we may be able to hlep. Otherwise the question will probably be closed.
– Ethan Bolker
2 hours ago