Using solve_ivp instead of odeint to solve initial problem value
up vote
0
down vote
favorite
Currently, I solve the following ODE system of equations using odeint
dx/dt = (-x + u)/2.0
dy/dt = (-y + x)/5.0
initial conditions: x = 0, y = 0
However, I would like to use solve_ivp which seems to be the recommended option for this type of problems, but honestly I don't know how to adapt the code...
Here is the code I'm using with odeint:
import numpy as np
from scipy.integrate import odeint, solve_ivp
import matplotlib.pyplot as plt
def model(z, t, u):
x = z[0]
y = z[1]
dxdt = (-x + u)/2.0
dydt = (-y + x)/5.0
dzdt = [dxdt, dydt]
return dzdt
def main():
# initial condition
z0 = [0, 0]
# number of time points
n = 401
# time points
t = np.linspace(0, 40, n)
# step input
u = np.zeros(n)
# change to 2.0 at time = 5.0
u[51:] = 2.0
# store solution
x = np.empty_like(t)
y = np.empty_like(t)
# record initial conditions
x[0] = z0[0]
y[0] = z0[1]
# solve ODE
for i in range(1, n):
# span for next time step
tspan = [t[i-1], t[i]]
# solve for next step
z = odeint(model, z0, tspan, args=(u[i],))
# store solution for plotting
x[i] = z[1][0]
y[i] = z[1][1]
# next initial condition
z0 = z[1]
# plot results
plt.plot(t,u,'g:',label='u(t)')
plt.plot(t,x,'b-',label='x(t)')
plt.plot(t,y,'r--',label='y(t)')
plt.ylabel('values')
plt.xlabel('time')
plt.legend(loc='best')
plt.show()
main()
python scipy ode differential-equations
add a comment |
up vote
0
down vote
favorite
Currently, I solve the following ODE system of equations using odeint
dx/dt = (-x + u)/2.0
dy/dt = (-y + x)/5.0
initial conditions: x = 0, y = 0
However, I would like to use solve_ivp which seems to be the recommended option for this type of problems, but honestly I don't know how to adapt the code...
Here is the code I'm using with odeint:
import numpy as np
from scipy.integrate import odeint, solve_ivp
import matplotlib.pyplot as plt
def model(z, t, u):
x = z[0]
y = z[1]
dxdt = (-x + u)/2.0
dydt = (-y + x)/5.0
dzdt = [dxdt, dydt]
return dzdt
def main():
# initial condition
z0 = [0, 0]
# number of time points
n = 401
# time points
t = np.linspace(0, 40, n)
# step input
u = np.zeros(n)
# change to 2.0 at time = 5.0
u[51:] = 2.0
# store solution
x = np.empty_like(t)
y = np.empty_like(t)
# record initial conditions
x[0] = z0[0]
y[0] = z0[1]
# solve ODE
for i in range(1, n):
# span for next time step
tspan = [t[i-1], t[i]]
# solve for next step
z = odeint(model, z0, tspan, args=(u[i],))
# store solution for plotting
x[i] = z[1][0]
y[i] = z[1][1]
# next initial condition
z0 = z[1]
# plot results
plt.plot(t,u,'g:',label='u(t)')
plt.plot(t,x,'b-',label='x(t)')
plt.plot(t,y,'r--',label='y(t)')
plt.ylabel('values')
plt.xlabel('time')
plt.legend(loc='best')
plt.show()
main()
python scipy ode differential-equations
add a comment |
up vote
0
down vote
favorite
up vote
0
down vote
favorite
Currently, I solve the following ODE system of equations using odeint
dx/dt = (-x + u)/2.0
dy/dt = (-y + x)/5.0
initial conditions: x = 0, y = 0
However, I would like to use solve_ivp which seems to be the recommended option for this type of problems, but honestly I don't know how to adapt the code...
Here is the code I'm using with odeint:
import numpy as np
from scipy.integrate import odeint, solve_ivp
import matplotlib.pyplot as plt
def model(z, t, u):
x = z[0]
y = z[1]
dxdt = (-x + u)/2.0
dydt = (-y + x)/5.0
dzdt = [dxdt, dydt]
return dzdt
def main():
# initial condition
z0 = [0, 0]
# number of time points
n = 401
# time points
t = np.linspace(0, 40, n)
# step input
u = np.zeros(n)
# change to 2.0 at time = 5.0
u[51:] = 2.0
# store solution
x = np.empty_like(t)
y = np.empty_like(t)
# record initial conditions
x[0] = z0[0]
y[0] = z0[1]
# solve ODE
for i in range(1, n):
# span for next time step
tspan = [t[i-1], t[i]]
# solve for next step
z = odeint(model, z0, tspan, args=(u[i],))
# store solution for plotting
x[i] = z[1][0]
y[i] = z[1][1]
# next initial condition
z0 = z[1]
# plot results
plt.plot(t,u,'g:',label='u(t)')
plt.plot(t,x,'b-',label='x(t)')
plt.plot(t,y,'r--',label='y(t)')
plt.ylabel('values')
plt.xlabel('time')
plt.legend(loc='best')
plt.show()
main()
python scipy ode differential-equations
Currently, I solve the following ODE system of equations using odeint
dx/dt = (-x + u)/2.0
dy/dt = (-y + x)/5.0
initial conditions: x = 0, y = 0
However, I would like to use solve_ivp which seems to be the recommended option for this type of problems, but honestly I don't know how to adapt the code...
Here is the code I'm using with odeint:
import numpy as np
from scipy.integrate import odeint, solve_ivp
import matplotlib.pyplot as plt
def model(z, t, u):
x = z[0]
y = z[1]
dxdt = (-x + u)/2.0
dydt = (-y + x)/5.0
dzdt = [dxdt, dydt]
return dzdt
def main():
# initial condition
z0 = [0, 0]
# number of time points
n = 401
# time points
t = np.linspace(0, 40, n)
# step input
u = np.zeros(n)
# change to 2.0 at time = 5.0
u[51:] = 2.0
# store solution
x = np.empty_like(t)
y = np.empty_like(t)
# record initial conditions
x[0] = z0[0]
y[0] = z0[1]
# solve ODE
for i in range(1, n):
# span for next time step
tspan = [t[i-1], t[i]]
# solve for next step
z = odeint(model, z0, tspan, args=(u[i],))
# store solution for plotting
x[i] = z[1][0]
y[i] = z[1][1]
# next initial condition
z0 = z[1]
# plot results
plt.plot(t,u,'g:',label='u(t)')
plt.plot(t,x,'b-',label='x(t)')
plt.plot(t,y,'r--',label='y(t)')
plt.ylabel('values')
plt.xlabel('time')
plt.legend(loc='best')
plt.show()
main()
python scipy ode differential-equations
python scipy ode differential-equations
asked Nov 21 at 15:26
Sergio Manchado
484
484
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
up vote
0
down vote
accepted
It's important that solve_ivp
expects f(t, z) as right-hand side of the ODE. If you don't want to change your ode function and also want to pass your parameter u
, I recommend to define a wrapper function:
def model(z, t, u):
x = z[0]
y = z[1]
dxdt = (-x + u)/2.0
dydt = (-y + x)/5.0
dzdt = [dxdt, dydt]
return dzdt
def odefun(t, z):
if t < 5:
return model(z, t, 0)
else:
return model(z, t, 2)
Now it's easy to call solve_ivp
:
def main():
# initial condition
z0 = [0, 0]
# number of time points
n = 401
# time points
t = np.linspace(0, 40, n)
# step input
u = np.zeros(n)
# change to 2.0 at time = 5.0
u[51:] = 2.0
res = solve_ivp(fun=odefun, t_span=[0, 40], y0=z0, t_eval=t)
x = res.y[0, :]
y = res.y[1, :]
# plot results
plt.plot(t,u,'g:',label='u(t)')
plt.plot(t,x,'b-',label='x(t)')
plt.plot(t,y,'r--',label='y(t)')
plt.ylabel('values')
plt.xlabel('time')
plt.legend(loc='best')
plt.show()
main()
Note that without passing t_eval=t
, the solver will automatically choose the time points inside tspan
at which the solution will be stored.
add a comment |
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
0
down vote
accepted
It's important that solve_ivp
expects f(t, z) as right-hand side of the ODE. If you don't want to change your ode function and also want to pass your parameter u
, I recommend to define a wrapper function:
def model(z, t, u):
x = z[0]
y = z[1]
dxdt = (-x + u)/2.0
dydt = (-y + x)/5.0
dzdt = [dxdt, dydt]
return dzdt
def odefun(t, z):
if t < 5:
return model(z, t, 0)
else:
return model(z, t, 2)
Now it's easy to call solve_ivp
:
def main():
# initial condition
z0 = [0, 0]
# number of time points
n = 401
# time points
t = np.linspace(0, 40, n)
# step input
u = np.zeros(n)
# change to 2.0 at time = 5.0
u[51:] = 2.0
res = solve_ivp(fun=odefun, t_span=[0, 40], y0=z0, t_eval=t)
x = res.y[0, :]
y = res.y[1, :]
# plot results
plt.plot(t,u,'g:',label='u(t)')
plt.plot(t,x,'b-',label='x(t)')
plt.plot(t,y,'r--',label='y(t)')
plt.ylabel('values')
plt.xlabel('time')
plt.legend(loc='best')
plt.show()
main()
Note that without passing t_eval=t
, the solver will automatically choose the time points inside tspan
at which the solution will be stored.
add a comment |
up vote
0
down vote
accepted
It's important that solve_ivp
expects f(t, z) as right-hand side of the ODE. If you don't want to change your ode function and also want to pass your parameter u
, I recommend to define a wrapper function:
def model(z, t, u):
x = z[0]
y = z[1]
dxdt = (-x + u)/2.0
dydt = (-y + x)/5.0
dzdt = [dxdt, dydt]
return dzdt
def odefun(t, z):
if t < 5:
return model(z, t, 0)
else:
return model(z, t, 2)
Now it's easy to call solve_ivp
:
def main():
# initial condition
z0 = [0, 0]
# number of time points
n = 401
# time points
t = np.linspace(0, 40, n)
# step input
u = np.zeros(n)
# change to 2.0 at time = 5.0
u[51:] = 2.0
res = solve_ivp(fun=odefun, t_span=[0, 40], y0=z0, t_eval=t)
x = res.y[0, :]
y = res.y[1, :]
# plot results
plt.plot(t,u,'g:',label='u(t)')
plt.plot(t,x,'b-',label='x(t)')
plt.plot(t,y,'r--',label='y(t)')
plt.ylabel('values')
plt.xlabel('time')
plt.legend(loc='best')
plt.show()
main()
Note that without passing t_eval=t
, the solver will automatically choose the time points inside tspan
at which the solution will be stored.
add a comment |
up vote
0
down vote
accepted
up vote
0
down vote
accepted
It's important that solve_ivp
expects f(t, z) as right-hand side of the ODE. If you don't want to change your ode function and also want to pass your parameter u
, I recommend to define a wrapper function:
def model(z, t, u):
x = z[0]
y = z[1]
dxdt = (-x + u)/2.0
dydt = (-y + x)/5.0
dzdt = [dxdt, dydt]
return dzdt
def odefun(t, z):
if t < 5:
return model(z, t, 0)
else:
return model(z, t, 2)
Now it's easy to call solve_ivp
:
def main():
# initial condition
z0 = [0, 0]
# number of time points
n = 401
# time points
t = np.linspace(0, 40, n)
# step input
u = np.zeros(n)
# change to 2.0 at time = 5.0
u[51:] = 2.0
res = solve_ivp(fun=odefun, t_span=[0, 40], y0=z0, t_eval=t)
x = res.y[0, :]
y = res.y[1, :]
# plot results
plt.plot(t,u,'g:',label='u(t)')
plt.plot(t,x,'b-',label='x(t)')
plt.plot(t,y,'r--',label='y(t)')
plt.ylabel('values')
plt.xlabel('time')
plt.legend(loc='best')
plt.show()
main()
Note that without passing t_eval=t
, the solver will automatically choose the time points inside tspan
at which the solution will be stored.
It's important that solve_ivp
expects f(t, z) as right-hand side of the ODE. If you don't want to change your ode function and also want to pass your parameter u
, I recommend to define a wrapper function:
def model(z, t, u):
x = z[0]
y = z[1]
dxdt = (-x + u)/2.0
dydt = (-y + x)/5.0
dzdt = [dxdt, dydt]
return dzdt
def odefun(t, z):
if t < 5:
return model(z, t, 0)
else:
return model(z, t, 2)
Now it's easy to call solve_ivp
:
def main():
# initial condition
z0 = [0, 0]
# number of time points
n = 401
# time points
t = np.linspace(0, 40, n)
# step input
u = np.zeros(n)
# change to 2.0 at time = 5.0
u[51:] = 2.0
res = solve_ivp(fun=odefun, t_span=[0, 40], y0=z0, t_eval=t)
x = res.y[0, :]
y = res.y[1, :]
# plot results
plt.plot(t,u,'g:',label='u(t)')
plt.plot(t,x,'b-',label='x(t)')
plt.plot(t,y,'r--',label='y(t)')
plt.ylabel('values')
plt.xlabel('time')
plt.legend(loc='best')
plt.show()
main()
Note that without passing t_eval=t
, the solver will automatically choose the time points inside tspan
at which the solution will be stored.
answered Nov 21 at 18:53
joni
678157
678157
add a comment |
add a comment |
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53415322%2fusing-solve-ivp-instead-of-odeint-to-solve-initial-problem-value%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown