Coproduto categorial
Coproduto categorial, no contexto de Teoria das categorias, é a noção dual ao produto categorial. Para obter o conceito dual, basta inverter as setas no diagrama do produto.
Índice
1 Exemplo
2 Ver também
3 Ligações externas
4 Referências
Exemplo |
Na categoria dos conjuntos, o coproduto é a união disjunta dos conjuntos.
Ver também |
- Matemática
- Ciência da computação
Ligações externas |
- Categories, Types and Structures por Andrea Asperti e Giuseppe Longo
- Lâminas para um curso curto de Teoria das Categorias por Carlos Campani
Referências |
- Mac Lane, Saunders (1998). Categories for the Working Mathematician (2nd ed.). Graduate Texts in Mathematics 5. Springer. ISBN 0-387-98403-8.
- Barr, Michael & Wells, Charles, Category Theory for Computing Science, Prentice Hall, London, UK, 1990.
- Asperti, Longo, "Categories, Types, and Structures", The MIT Press, Cambridge, Massachusetts, London, England.
Teoria das categorias
Conceitos e construções categoriais:
Objeto |
Morfismo |
Categoria |
Objeto inicial |
Objeto terminal
Monomorfismo |
Epimorfismo |
Isomorfismo |
Limite |
Colimite
Produto categorial |
Coproduto categorial |
Equalizador |
Coequalizador
Produto fibrado |
Soma amalgamada |
Cone |
Cocone |
Functor
Transformação natural |
Objeto exponencial |
Adjunção