docker with tensorflow gpu - ImportError: libcublas.so.9.0: cannot open shared object file: No such file or...
Im trying to run docker with tensorflow using Nvidia GPUs, however when I run my container I get the following error:
pgp_1 | Traceback (most recent call last):
pgp_1 | File "/opt/app-root/lib/python3.6/site-packages/tensorflow/python/pywrap_tensorflow.py", line 58, in <module>
pgp_1 | from tensorflow.python.pywrap_tensorflow_internal import *
pgp_1 | File "/opt/app-root/lib/python3.6/site-packages/tensorflow/python/pywrap_tensorflow_internal.py", line 28, in <module>
pgp_1 | _pywrap_tensorflow_internal = swig_import_helper()
pgp_1 | File "/opt/app-root/lib/python3.6/site-packages/tensorflow/python/pywrap_tensorflow_internal.py", line 24, in swig_import_helper
pgp_1 | _mod = imp.load_module('_pywrap_tensorflow_internal', fp, pathname, description)
pgp_1 | File "/opt/app-root/lib64/python3.6/imp.py", line 243, in load_module
pgp_1 | return load_dynamic(name, filename, file)
pgp_1 | File "/opt/app-root/lib64/python3.6/imp.py", line 343, in load_dynamic
pgp_1 | return _load(spec)
pgp_1 | ImportError: libcublas.so.9.0: cannot open shared object file: No such file or directory
Docker-compose
My docker compose file looks like:
version: '3'
services:
pgp:
devices:
- /dev/nvidia0
- /dev/nvidia1
- /dev/nvidia2
- /dev/nvidia3
- /dev/nvidia4
- /dev/nvidiactl
- /dev/nvidia-uvm
image: "myimg/pgp"
ports:
- "5000:5000"
environment:
- LD_LIBRARY_PATH=/opt/local/cuda/lib64/
- GPU_DEVICE=4
- NVIDIA_VISIBLE_DEVICES all
- NVIDIA_DRIVER_CAPABILITIES compute,utility
volumes:
- ./train_package:/opt/app-root/src/train_package
- /usr/local/cuda/lib64/:/opt/local/cuda/lib64/
As you can see, I have tried having a volume to map host cuda to the docker container but this didnt help.
I am able to successfully run nvidia-docker run --rm nvidia/cuda nvidia-smi
Versions
Cuda
cat /usr/local/cuda/version.txt shows CUDA Version 9.0.176
nvcc -V
nvcc -V
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2017 NVIDIA Corporation
Built on Fri_Sep__1_21:08:03_CDT_2017
Cuda compilation tools, release 9.0, V9.0.176
nvidia-docker version
NVIDIA Docker: 2.0.3
Client:
Version: 17.12.1-ce
API version: 1.35
Go version: go1.9.4
Git commit: 7390fc6
Built: Tue Feb 27 22:17:40 2018
OS/Arch: linux/amd64
Server:
Engine:
Version: 17.12.1-ce
API version: 1.35 (minimum version 1.12)
Go version: go1.9.4
Git commit: 7390fc6
Built: Tue Feb 27 22:16:13 2018
OS/Arch: linux/amd64
Experimental: false
Tensorflow
1.5 with gpu support, via pip
ldconfig -p | grep cuda
libnvrtc.so.9.0 (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libnvrtc.so.9.0
libnvrtc.so (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libnvrtc.so
libnvrtc-builtins.so.9.0 (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libnvrtc-builtins.so.9.0
libnvrtc-builtins.so (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libnvrtc-builtins.so
libnvgraph.so.9.0 (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libnvgraph.so.9.0
libnvgraph.so (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libnvgraph.so
libnvblas.so.9.0 (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libnvblas.so.9.0
libnvblas.so (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libnvblas.so
libnvToolsExt.so.1 (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libnvToolsExt.so.1
libnvToolsExt.so (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libnvToolsExt.so
libnpps.so.9.0 (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libnpps.so.9.0
libnpps.so (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libnpps.so
libnppitc.so.9.0 (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libnppitc.so.9.0
libnppitc.so (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libnppitc.so
libnppisu.so.9.0 (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libnppisu.so.9.0
libnppisu.so (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libnppisu.so
libnppist.so.9.0 (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libnppist.so.9.0
libnppist.so (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libnppist.so
libnppim.so.9.0 (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libnppim.so.9.0
libnppim.so (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libnppim.so
libnppig.so.9.0 (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libnppig.so.9.0
libnppig.so (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libnppig.so
libnppif.so.9.0 (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libnppif.so.9.0
libnppif.so (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libnppif.so
libnppidei.so.9.0 (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libnppidei.so.9.0
libnppidei.so (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libnppidei.so
libnppicom.so.9.0 (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libnppicom.so.9.0
libnppicom.so (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libnppicom.so
libnppicc.so.9.0 (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libnppicc.so.9.0
libnppicc.so (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libnppicc.so
libnppial.so.9.0 (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libnppial.so.9.0
libnppial.so (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libnppial.so
libnppc.so.9.0 (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libnppc.so.9.0
libnppc.so (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libnppc.so
libicudata.so.55 (libc6,x86-64) => /usr/lib/x86_64-linux-gnu/libicudata.so.55
libcusparse.so.9.0 (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libcusparse.so.9.0
libcusparse.so (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libcusparse.so
libcusolver.so.9.0 (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libcusolver.so.9.0
libcusolver.so (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libcusolver.so
libcurand.so.9.0 (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libcurand.so.9.0
libcurand.so (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libcurand.so
libcuinj64.so.9.0 (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libcuinj64.so.9.0
libcuinj64.so (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libcuinj64.so
libcufftw.so.9.0 (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libcufftw.so.9.0
libcufftw.so (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libcufftw.so
libcufft.so.9.0 (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libcufft.so.9.0
libcufft.so (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libcufft.so
libcudart.so.9.0 (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libcudart.so.9.0
libcudart.so.7.5 (libc6,x86-64) => /usr/lib/x86_64-linux-gnu/libcudart.so.7.5
libcudart.so (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libcudart.so
libcudart.so (libc6,x86-64) => /usr/lib/x86_64-linux-gnu/libcudart.so
libcuda.so.1 (libc6,x86-64) => /usr/lib/x86_64-linux-gnu/libcuda.so.1
libcuda.so (libc6,x86-64) => /usr/lib/x86_64-linux-gnu/libcuda.so
libcublas.so.9.0 (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libcublas.so.9.0
libcublas.so (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libcublas.so
libaccinj64.so.9.0 (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libaccinj64.so.9.0
libaccinj64.so (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libaccinj64.so
libOpenCL.so.1 (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libOpenCL.so.1
libOpenCL.so (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libOpenCL.so
Tests with Tensorflow on Docker vs host
The following works, when running on the host:
python3 -c "import tensorflow as tf; print(tf.GIT_VERSION, tf.VERSION)"
v1.5.0-0-g37aa430d84 1.5.0
Run container
nvidia-docker run -d --name testtfgpu -p 8888:8888 -p 6006:6006 gcr.io/tensorflow/tensorflow:latest-gpu
Log in
nvidia-docker exec -it testtfgpu bash
Test Tensorflow version
pip show tensorflow-gpu
shows:
pip show tensorflow-gpu
Name: tensorflow-gpu
Version: 1.6.0
Summary: TensorFlow helps the tensors flow
Home-page: https://www.tensorflow.org/
Author: Google Inc.
Author-email: opensource@google.com
License: Apache 2.0
Location: /usr/local/lib/python2.7/dist-packages
Requires: astor, protobuf, gast, tensorboard, six, wheel, absl-py, backports.weakref, termcolor, enum34, numpy, grpcio, mock
Python 2
python -c "import tensorflow as tf; print(tf.GIT_VERSION, tf.VERSION)"
Results in:
Illegal instruction (core dumped)
Python 3
python3 -c "import tensorflow as tf; print(tf.GIT_VERSION, tf.VERSION)"
Results in:
python3 -c "import tensorflow as tf; print(tf.GIT_
Traceback (most recent call last):
File "<string>", line 1, in <module>
ImportError: No module named 'tensorflow'
docker tensorflow docker-compose nvidia nvidia-docker
add a comment |
Im trying to run docker with tensorflow using Nvidia GPUs, however when I run my container I get the following error:
pgp_1 | Traceback (most recent call last):
pgp_1 | File "/opt/app-root/lib/python3.6/site-packages/tensorflow/python/pywrap_tensorflow.py", line 58, in <module>
pgp_1 | from tensorflow.python.pywrap_tensorflow_internal import *
pgp_1 | File "/opt/app-root/lib/python3.6/site-packages/tensorflow/python/pywrap_tensorflow_internal.py", line 28, in <module>
pgp_1 | _pywrap_tensorflow_internal = swig_import_helper()
pgp_1 | File "/opt/app-root/lib/python3.6/site-packages/tensorflow/python/pywrap_tensorflow_internal.py", line 24, in swig_import_helper
pgp_1 | _mod = imp.load_module('_pywrap_tensorflow_internal', fp, pathname, description)
pgp_1 | File "/opt/app-root/lib64/python3.6/imp.py", line 243, in load_module
pgp_1 | return load_dynamic(name, filename, file)
pgp_1 | File "/opt/app-root/lib64/python3.6/imp.py", line 343, in load_dynamic
pgp_1 | return _load(spec)
pgp_1 | ImportError: libcublas.so.9.0: cannot open shared object file: No such file or directory
Docker-compose
My docker compose file looks like:
version: '3'
services:
pgp:
devices:
- /dev/nvidia0
- /dev/nvidia1
- /dev/nvidia2
- /dev/nvidia3
- /dev/nvidia4
- /dev/nvidiactl
- /dev/nvidia-uvm
image: "myimg/pgp"
ports:
- "5000:5000"
environment:
- LD_LIBRARY_PATH=/opt/local/cuda/lib64/
- GPU_DEVICE=4
- NVIDIA_VISIBLE_DEVICES all
- NVIDIA_DRIVER_CAPABILITIES compute,utility
volumes:
- ./train_package:/opt/app-root/src/train_package
- /usr/local/cuda/lib64/:/opt/local/cuda/lib64/
As you can see, I have tried having a volume to map host cuda to the docker container but this didnt help.
I am able to successfully run nvidia-docker run --rm nvidia/cuda nvidia-smi
Versions
Cuda
cat /usr/local/cuda/version.txt shows CUDA Version 9.0.176
nvcc -V
nvcc -V
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2017 NVIDIA Corporation
Built on Fri_Sep__1_21:08:03_CDT_2017
Cuda compilation tools, release 9.0, V9.0.176
nvidia-docker version
NVIDIA Docker: 2.0.3
Client:
Version: 17.12.1-ce
API version: 1.35
Go version: go1.9.4
Git commit: 7390fc6
Built: Tue Feb 27 22:17:40 2018
OS/Arch: linux/amd64
Server:
Engine:
Version: 17.12.1-ce
API version: 1.35 (minimum version 1.12)
Go version: go1.9.4
Git commit: 7390fc6
Built: Tue Feb 27 22:16:13 2018
OS/Arch: linux/amd64
Experimental: false
Tensorflow
1.5 with gpu support, via pip
ldconfig -p | grep cuda
libnvrtc.so.9.0 (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libnvrtc.so.9.0
libnvrtc.so (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libnvrtc.so
libnvrtc-builtins.so.9.0 (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libnvrtc-builtins.so.9.0
libnvrtc-builtins.so (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libnvrtc-builtins.so
libnvgraph.so.9.0 (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libnvgraph.so.9.0
libnvgraph.so (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libnvgraph.so
libnvblas.so.9.0 (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libnvblas.so.9.0
libnvblas.so (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libnvblas.so
libnvToolsExt.so.1 (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libnvToolsExt.so.1
libnvToolsExt.so (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libnvToolsExt.so
libnpps.so.9.0 (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libnpps.so.9.0
libnpps.so (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libnpps.so
libnppitc.so.9.0 (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libnppitc.so.9.0
libnppitc.so (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libnppitc.so
libnppisu.so.9.0 (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libnppisu.so.9.0
libnppisu.so (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libnppisu.so
libnppist.so.9.0 (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libnppist.so.9.0
libnppist.so (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libnppist.so
libnppim.so.9.0 (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libnppim.so.9.0
libnppim.so (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libnppim.so
libnppig.so.9.0 (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libnppig.so.9.0
libnppig.so (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libnppig.so
libnppif.so.9.0 (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libnppif.so.9.0
libnppif.so (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libnppif.so
libnppidei.so.9.0 (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libnppidei.so.9.0
libnppidei.so (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libnppidei.so
libnppicom.so.9.0 (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libnppicom.so.9.0
libnppicom.so (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libnppicom.so
libnppicc.so.9.0 (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libnppicc.so.9.0
libnppicc.so (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libnppicc.so
libnppial.so.9.0 (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libnppial.so.9.0
libnppial.so (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libnppial.so
libnppc.so.9.0 (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libnppc.so.9.0
libnppc.so (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libnppc.so
libicudata.so.55 (libc6,x86-64) => /usr/lib/x86_64-linux-gnu/libicudata.so.55
libcusparse.so.9.0 (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libcusparse.so.9.0
libcusparse.so (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libcusparse.so
libcusolver.so.9.0 (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libcusolver.so.9.0
libcusolver.so (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libcusolver.so
libcurand.so.9.0 (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libcurand.so.9.0
libcurand.so (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libcurand.so
libcuinj64.so.9.0 (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libcuinj64.so.9.0
libcuinj64.so (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libcuinj64.so
libcufftw.so.9.0 (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libcufftw.so.9.0
libcufftw.so (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libcufftw.so
libcufft.so.9.0 (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libcufft.so.9.0
libcufft.so (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libcufft.so
libcudart.so.9.0 (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libcudart.so.9.0
libcudart.so.7.5 (libc6,x86-64) => /usr/lib/x86_64-linux-gnu/libcudart.so.7.5
libcudart.so (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libcudart.so
libcudart.so (libc6,x86-64) => /usr/lib/x86_64-linux-gnu/libcudart.so
libcuda.so.1 (libc6,x86-64) => /usr/lib/x86_64-linux-gnu/libcuda.so.1
libcuda.so (libc6,x86-64) => /usr/lib/x86_64-linux-gnu/libcuda.so
libcublas.so.9.0 (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libcublas.so.9.0
libcublas.so (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libcublas.so
libaccinj64.so.9.0 (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libaccinj64.so.9.0
libaccinj64.so (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libaccinj64.so
libOpenCL.so.1 (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libOpenCL.so.1
libOpenCL.so (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libOpenCL.so
Tests with Tensorflow on Docker vs host
The following works, when running on the host:
python3 -c "import tensorflow as tf; print(tf.GIT_VERSION, tf.VERSION)"
v1.5.0-0-g37aa430d84 1.5.0
Run container
nvidia-docker run -d --name testtfgpu -p 8888:8888 -p 6006:6006 gcr.io/tensorflow/tensorflow:latest-gpu
Log in
nvidia-docker exec -it testtfgpu bash
Test Tensorflow version
pip show tensorflow-gpu
shows:
pip show tensorflow-gpu
Name: tensorflow-gpu
Version: 1.6.0
Summary: TensorFlow helps the tensors flow
Home-page: https://www.tensorflow.org/
Author: Google Inc.
Author-email: opensource@google.com
License: Apache 2.0
Location: /usr/local/lib/python2.7/dist-packages
Requires: astor, protobuf, gast, tensorboard, six, wheel, absl-py, backports.weakref, termcolor, enum34, numpy, grpcio, mock
Python 2
python -c "import tensorflow as tf; print(tf.GIT_VERSION, tf.VERSION)"
Results in:
Illegal instruction (core dumped)
Python 3
python3 -c "import tensorflow as tf; print(tf.GIT_VERSION, tf.VERSION)"
Results in:
python3 -c "import tensorflow as tf; print(tf.GIT_
Traceback (most recent call last):
File "<string>", line 1, in <module>
ImportError: No module named 'tensorflow'
docker tensorflow docker-compose nvidia nvidia-docker
Did you try to install this way, pip3 install --upgrade tensorflow-gpu?
– Dinusha Dilanka
Mar 22 '18 at 14:49
add a comment |
Im trying to run docker with tensorflow using Nvidia GPUs, however when I run my container I get the following error:
pgp_1 | Traceback (most recent call last):
pgp_1 | File "/opt/app-root/lib/python3.6/site-packages/tensorflow/python/pywrap_tensorflow.py", line 58, in <module>
pgp_1 | from tensorflow.python.pywrap_tensorflow_internal import *
pgp_1 | File "/opt/app-root/lib/python3.6/site-packages/tensorflow/python/pywrap_tensorflow_internal.py", line 28, in <module>
pgp_1 | _pywrap_tensorflow_internal = swig_import_helper()
pgp_1 | File "/opt/app-root/lib/python3.6/site-packages/tensorflow/python/pywrap_tensorflow_internal.py", line 24, in swig_import_helper
pgp_1 | _mod = imp.load_module('_pywrap_tensorflow_internal', fp, pathname, description)
pgp_1 | File "/opt/app-root/lib64/python3.6/imp.py", line 243, in load_module
pgp_1 | return load_dynamic(name, filename, file)
pgp_1 | File "/opt/app-root/lib64/python3.6/imp.py", line 343, in load_dynamic
pgp_1 | return _load(spec)
pgp_1 | ImportError: libcublas.so.9.0: cannot open shared object file: No such file or directory
Docker-compose
My docker compose file looks like:
version: '3'
services:
pgp:
devices:
- /dev/nvidia0
- /dev/nvidia1
- /dev/nvidia2
- /dev/nvidia3
- /dev/nvidia4
- /dev/nvidiactl
- /dev/nvidia-uvm
image: "myimg/pgp"
ports:
- "5000:5000"
environment:
- LD_LIBRARY_PATH=/opt/local/cuda/lib64/
- GPU_DEVICE=4
- NVIDIA_VISIBLE_DEVICES all
- NVIDIA_DRIVER_CAPABILITIES compute,utility
volumes:
- ./train_package:/opt/app-root/src/train_package
- /usr/local/cuda/lib64/:/opt/local/cuda/lib64/
As you can see, I have tried having a volume to map host cuda to the docker container but this didnt help.
I am able to successfully run nvidia-docker run --rm nvidia/cuda nvidia-smi
Versions
Cuda
cat /usr/local/cuda/version.txt shows CUDA Version 9.0.176
nvcc -V
nvcc -V
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2017 NVIDIA Corporation
Built on Fri_Sep__1_21:08:03_CDT_2017
Cuda compilation tools, release 9.0, V9.0.176
nvidia-docker version
NVIDIA Docker: 2.0.3
Client:
Version: 17.12.1-ce
API version: 1.35
Go version: go1.9.4
Git commit: 7390fc6
Built: Tue Feb 27 22:17:40 2018
OS/Arch: linux/amd64
Server:
Engine:
Version: 17.12.1-ce
API version: 1.35 (minimum version 1.12)
Go version: go1.9.4
Git commit: 7390fc6
Built: Tue Feb 27 22:16:13 2018
OS/Arch: linux/amd64
Experimental: false
Tensorflow
1.5 with gpu support, via pip
ldconfig -p | grep cuda
libnvrtc.so.9.0 (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libnvrtc.so.9.0
libnvrtc.so (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libnvrtc.so
libnvrtc-builtins.so.9.0 (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libnvrtc-builtins.so.9.0
libnvrtc-builtins.so (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libnvrtc-builtins.so
libnvgraph.so.9.0 (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libnvgraph.so.9.0
libnvgraph.so (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libnvgraph.so
libnvblas.so.9.0 (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libnvblas.so.9.0
libnvblas.so (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libnvblas.so
libnvToolsExt.so.1 (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libnvToolsExt.so.1
libnvToolsExt.so (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libnvToolsExt.so
libnpps.so.9.0 (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libnpps.so.9.0
libnpps.so (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libnpps.so
libnppitc.so.9.0 (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libnppitc.so.9.0
libnppitc.so (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libnppitc.so
libnppisu.so.9.0 (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libnppisu.so.9.0
libnppisu.so (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libnppisu.so
libnppist.so.9.0 (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libnppist.so.9.0
libnppist.so (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libnppist.so
libnppim.so.9.0 (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libnppim.so.9.0
libnppim.so (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libnppim.so
libnppig.so.9.0 (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libnppig.so.9.0
libnppig.so (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libnppig.so
libnppif.so.9.0 (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libnppif.so.9.0
libnppif.so (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libnppif.so
libnppidei.so.9.0 (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libnppidei.so.9.0
libnppidei.so (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libnppidei.so
libnppicom.so.9.0 (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libnppicom.so.9.0
libnppicom.so (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libnppicom.so
libnppicc.so.9.0 (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libnppicc.so.9.0
libnppicc.so (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libnppicc.so
libnppial.so.9.0 (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libnppial.so.9.0
libnppial.so (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libnppial.so
libnppc.so.9.0 (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libnppc.so.9.0
libnppc.so (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libnppc.so
libicudata.so.55 (libc6,x86-64) => /usr/lib/x86_64-linux-gnu/libicudata.so.55
libcusparse.so.9.0 (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libcusparse.so.9.0
libcusparse.so (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libcusparse.so
libcusolver.so.9.0 (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libcusolver.so.9.0
libcusolver.so (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libcusolver.so
libcurand.so.9.0 (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libcurand.so.9.0
libcurand.so (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libcurand.so
libcuinj64.so.9.0 (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libcuinj64.so.9.0
libcuinj64.so (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libcuinj64.so
libcufftw.so.9.0 (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libcufftw.so.9.0
libcufftw.so (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libcufftw.so
libcufft.so.9.0 (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libcufft.so.9.0
libcufft.so (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libcufft.so
libcudart.so.9.0 (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libcudart.so.9.0
libcudart.so.7.5 (libc6,x86-64) => /usr/lib/x86_64-linux-gnu/libcudart.so.7.5
libcudart.so (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libcudart.so
libcudart.so (libc6,x86-64) => /usr/lib/x86_64-linux-gnu/libcudart.so
libcuda.so.1 (libc6,x86-64) => /usr/lib/x86_64-linux-gnu/libcuda.so.1
libcuda.so (libc6,x86-64) => /usr/lib/x86_64-linux-gnu/libcuda.so
libcublas.so.9.0 (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libcublas.so.9.0
libcublas.so (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libcublas.so
libaccinj64.so.9.0 (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libaccinj64.so.9.0
libaccinj64.so (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libaccinj64.so
libOpenCL.so.1 (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libOpenCL.so.1
libOpenCL.so (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libOpenCL.so
Tests with Tensorflow on Docker vs host
The following works, when running on the host:
python3 -c "import tensorflow as tf; print(tf.GIT_VERSION, tf.VERSION)"
v1.5.0-0-g37aa430d84 1.5.0
Run container
nvidia-docker run -d --name testtfgpu -p 8888:8888 -p 6006:6006 gcr.io/tensorflow/tensorflow:latest-gpu
Log in
nvidia-docker exec -it testtfgpu bash
Test Tensorflow version
pip show tensorflow-gpu
shows:
pip show tensorflow-gpu
Name: tensorflow-gpu
Version: 1.6.0
Summary: TensorFlow helps the tensors flow
Home-page: https://www.tensorflow.org/
Author: Google Inc.
Author-email: opensource@google.com
License: Apache 2.0
Location: /usr/local/lib/python2.7/dist-packages
Requires: astor, protobuf, gast, tensorboard, six, wheel, absl-py, backports.weakref, termcolor, enum34, numpy, grpcio, mock
Python 2
python -c "import tensorflow as tf; print(tf.GIT_VERSION, tf.VERSION)"
Results in:
Illegal instruction (core dumped)
Python 3
python3 -c "import tensorflow as tf; print(tf.GIT_VERSION, tf.VERSION)"
Results in:
python3 -c "import tensorflow as tf; print(tf.GIT_
Traceback (most recent call last):
File "<string>", line 1, in <module>
ImportError: No module named 'tensorflow'
docker tensorflow docker-compose nvidia nvidia-docker
Im trying to run docker with tensorflow using Nvidia GPUs, however when I run my container I get the following error:
pgp_1 | Traceback (most recent call last):
pgp_1 | File "/opt/app-root/lib/python3.6/site-packages/tensorflow/python/pywrap_tensorflow.py", line 58, in <module>
pgp_1 | from tensorflow.python.pywrap_tensorflow_internal import *
pgp_1 | File "/opt/app-root/lib/python3.6/site-packages/tensorflow/python/pywrap_tensorflow_internal.py", line 28, in <module>
pgp_1 | _pywrap_tensorflow_internal = swig_import_helper()
pgp_1 | File "/opt/app-root/lib/python3.6/site-packages/tensorflow/python/pywrap_tensorflow_internal.py", line 24, in swig_import_helper
pgp_1 | _mod = imp.load_module('_pywrap_tensorflow_internal', fp, pathname, description)
pgp_1 | File "/opt/app-root/lib64/python3.6/imp.py", line 243, in load_module
pgp_1 | return load_dynamic(name, filename, file)
pgp_1 | File "/opt/app-root/lib64/python3.6/imp.py", line 343, in load_dynamic
pgp_1 | return _load(spec)
pgp_1 | ImportError: libcublas.so.9.0: cannot open shared object file: No such file or directory
Docker-compose
My docker compose file looks like:
version: '3'
services:
pgp:
devices:
- /dev/nvidia0
- /dev/nvidia1
- /dev/nvidia2
- /dev/nvidia3
- /dev/nvidia4
- /dev/nvidiactl
- /dev/nvidia-uvm
image: "myimg/pgp"
ports:
- "5000:5000"
environment:
- LD_LIBRARY_PATH=/opt/local/cuda/lib64/
- GPU_DEVICE=4
- NVIDIA_VISIBLE_DEVICES all
- NVIDIA_DRIVER_CAPABILITIES compute,utility
volumes:
- ./train_package:/opt/app-root/src/train_package
- /usr/local/cuda/lib64/:/opt/local/cuda/lib64/
As you can see, I have tried having a volume to map host cuda to the docker container but this didnt help.
I am able to successfully run nvidia-docker run --rm nvidia/cuda nvidia-smi
Versions
Cuda
cat /usr/local/cuda/version.txt shows CUDA Version 9.0.176
nvcc -V
nvcc -V
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2017 NVIDIA Corporation
Built on Fri_Sep__1_21:08:03_CDT_2017
Cuda compilation tools, release 9.0, V9.0.176
nvidia-docker version
NVIDIA Docker: 2.0.3
Client:
Version: 17.12.1-ce
API version: 1.35
Go version: go1.9.4
Git commit: 7390fc6
Built: Tue Feb 27 22:17:40 2018
OS/Arch: linux/amd64
Server:
Engine:
Version: 17.12.1-ce
API version: 1.35 (minimum version 1.12)
Go version: go1.9.4
Git commit: 7390fc6
Built: Tue Feb 27 22:16:13 2018
OS/Arch: linux/amd64
Experimental: false
Tensorflow
1.5 with gpu support, via pip
ldconfig -p | grep cuda
libnvrtc.so.9.0 (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libnvrtc.so.9.0
libnvrtc.so (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libnvrtc.so
libnvrtc-builtins.so.9.0 (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libnvrtc-builtins.so.9.0
libnvrtc-builtins.so (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libnvrtc-builtins.so
libnvgraph.so.9.0 (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libnvgraph.so.9.0
libnvgraph.so (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libnvgraph.so
libnvblas.so.9.0 (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libnvblas.so.9.0
libnvblas.so (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libnvblas.so
libnvToolsExt.so.1 (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libnvToolsExt.so.1
libnvToolsExt.so (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libnvToolsExt.so
libnpps.so.9.0 (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libnpps.so.9.0
libnpps.so (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libnpps.so
libnppitc.so.9.0 (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libnppitc.so.9.0
libnppitc.so (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libnppitc.so
libnppisu.so.9.0 (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libnppisu.so.9.0
libnppisu.so (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libnppisu.so
libnppist.so.9.0 (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libnppist.so.9.0
libnppist.so (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libnppist.so
libnppim.so.9.0 (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libnppim.so.9.0
libnppim.so (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libnppim.so
libnppig.so.9.0 (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libnppig.so.9.0
libnppig.so (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libnppig.so
libnppif.so.9.0 (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libnppif.so.9.0
libnppif.so (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libnppif.so
libnppidei.so.9.0 (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libnppidei.so.9.0
libnppidei.so (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libnppidei.so
libnppicom.so.9.0 (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libnppicom.so.9.0
libnppicom.so (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libnppicom.so
libnppicc.so.9.0 (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libnppicc.so.9.0
libnppicc.so (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libnppicc.so
libnppial.so.9.0 (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libnppial.so.9.0
libnppial.so (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libnppial.so
libnppc.so.9.0 (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libnppc.so.9.0
libnppc.so (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libnppc.so
libicudata.so.55 (libc6,x86-64) => /usr/lib/x86_64-linux-gnu/libicudata.so.55
libcusparse.so.9.0 (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libcusparse.so.9.0
libcusparse.so (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libcusparse.so
libcusolver.so.9.0 (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libcusolver.so.9.0
libcusolver.so (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libcusolver.so
libcurand.so.9.0 (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libcurand.so.9.0
libcurand.so (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libcurand.so
libcuinj64.so.9.0 (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libcuinj64.so.9.0
libcuinj64.so (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libcuinj64.so
libcufftw.so.9.0 (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libcufftw.so.9.0
libcufftw.so (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libcufftw.so
libcufft.so.9.0 (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libcufft.so.9.0
libcufft.so (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libcufft.so
libcudart.so.9.0 (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libcudart.so.9.0
libcudart.so.7.5 (libc6,x86-64) => /usr/lib/x86_64-linux-gnu/libcudart.so.7.5
libcudart.so (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libcudart.so
libcudart.so (libc6,x86-64) => /usr/lib/x86_64-linux-gnu/libcudart.so
libcuda.so.1 (libc6,x86-64) => /usr/lib/x86_64-linux-gnu/libcuda.so.1
libcuda.so (libc6,x86-64) => /usr/lib/x86_64-linux-gnu/libcuda.so
libcublas.so.9.0 (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libcublas.so.9.0
libcublas.so (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libcublas.so
libaccinj64.so.9.0 (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libaccinj64.so.9.0
libaccinj64.so (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libaccinj64.so
libOpenCL.so.1 (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libOpenCL.so.1
libOpenCL.so (libc6,x86-64) => /usr/local/cuda-9.0/targets/x86_64-linux/lib/libOpenCL.so
Tests with Tensorflow on Docker vs host
The following works, when running on the host:
python3 -c "import tensorflow as tf; print(tf.GIT_VERSION, tf.VERSION)"
v1.5.0-0-g37aa430d84 1.5.0
Run container
nvidia-docker run -d --name testtfgpu -p 8888:8888 -p 6006:6006 gcr.io/tensorflow/tensorflow:latest-gpu
Log in
nvidia-docker exec -it testtfgpu bash
Test Tensorflow version
pip show tensorflow-gpu
shows:
pip show tensorflow-gpu
Name: tensorflow-gpu
Version: 1.6.0
Summary: TensorFlow helps the tensors flow
Home-page: https://www.tensorflow.org/
Author: Google Inc.
Author-email: opensource@google.com
License: Apache 2.0
Location: /usr/local/lib/python2.7/dist-packages
Requires: astor, protobuf, gast, tensorboard, six, wheel, absl-py, backports.weakref, termcolor, enum34, numpy, grpcio, mock
Python 2
python -c "import tensorflow as tf; print(tf.GIT_VERSION, tf.VERSION)"
Results in:
Illegal instruction (core dumped)
Python 3
python3 -c "import tensorflow as tf; print(tf.GIT_VERSION, tf.VERSION)"
Results in:
python3 -c "import tensorflow as tf; print(tf.GIT_
Traceback (most recent call last):
File "<string>", line 1, in <module>
ImportError: No module named 'tensorflow'
docker tensorflow docker-compose nvidia nvidia-docker
docker tensorflow docker-compose nvidia nvidia-docker
edited Mar 22 '18 at 5:49
Magick
asked Mar 21 '18 at 1:17
MagickMagick
76132954
76132954
Did you try to install this way, pip3 install --upgrade tensorflow-gpu?
– Dinusha Dilanka
Mar 22 '18 at 14:49
add a comment |
Did you try to install this way, pip3 install --upgrade tensorflow-gpu?
– Dinusha Dilanka
Mar 22 '18 at 14:49
Did you try to install this way, pip3 install --upgrade tensorflow-gpu?
– Dinusha Dilanka
Mar 22 '18 at 14:49
Did you try to install this way, pip3 install --upgrade tensorflow-gpu?
– Dinusha Dilanka
Mar 22 '18 at 14:49
add a comment |
2 Answers
2
active
oldest
votes
The problem because of your cuDNN version. Tensorflow-GPU 1.5 version will support cuDNN 7.0._ version. You can download that from here. Make sure that your CUDA version 9.0._ and cuDNN version 7.0._ . Please refer link in here for more details.
How can I check which version of cuDNN installed? Also, the the link that you provide - the url - containsv7.0.5
andcudnn-9.0
- so I am confused about which version I should have, and which version I am getting.
– Magick
Mar 21 '18 at 12:27
If you are using tensorflow 1.5 it will support to CUDA 9.0._. But you have to chose correct cuDNN version v7.0.5 or v7.0.4 should support.
– Dinusha Dilanka
Mar 21 '18 at 12:38
I am using TF 1.5. How do I find out which version of cuDNN I have installed. And thanks for your help.
– Magick
Mar 21 '18 at 12:43
2
You do not want to find cuDNN version just download v7.0.4 and extract and copy and paste to CUDA folder as they mention in site. I used CUDA 9.0 and cuDNN v7.1._ but it not work and then I changed cuDNN version to v7.0.4 after it was working find.
– Dinusha Dilanka
Mar 21 '18 at 12:51
add a comment |
It looks like a conflict between CUDA's version and TensorFlow's
First, try to check your CUDA version with one of the commands such as nvcc --version
or cat /usr/local/cuda/version.txt
If that's 8.x, you may need to reinstall CUDA or simpler, downgrade TensorFlow to 1.4. Otherwise, if your CUDA is 9.x, you need TensorFlow 1.5 or newer.
Hope that helps.
Thanks @Dong, I've updated my post with the versions. I am using TF1.5 that should support nvidia 9.
– Magick
Mar 21 '18 at 1:39
I see your log says that it's CUDA 7.5, right? I have a training server with CUDA 8.0, I just tried to replace tensorflow-gpu 1.4 with 1.5 and got the same error as your: i.imgur.com/0rmz2Ds.png In another server I have CUDA 9.0, it works with TensorFlow 1.5 as well: i.imgur.com/P7m0EW7.png So, I still would like to suggest you to try several different versions of tensorflow-gpu to see which one works. As my experience: - TF 1.4 works with CUDA 8.0 - TF 1.5 and 1.6 work with CUDA 9.0 - Nothing work with CUDA 9.1, I've installed it at first, then removed.
– Dong Nguyen
Mar 21 '18 at 4:28
I have cuda-9.0 installed. Butnvcc -V
shows release 7. Are you suggesting that nvcc should be version 9?
– Magick
Mar 21 '18 at 4:36
Something went wrong with your installation. At first time deal with CUDA, I was also confused with it much. Your path looks odd. Not Debian? You may try something likecat /usr/local/cuda/version.txt
to see which output?
– Dong Nguyen
Mar 21 '18 at 4:39
1
If so I have no more idea. However I never run them in docker.
– Dong Nguyen
Mar 21 '18 at 4:53
|
show 1 more comment
Your Answer
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f49396659%2fdocker-with-tensorflow-gpu-importerror-libcublas-so-9-0-cannot-open-shared-o%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
The problem because of your cuDNN version. Tensorflow-GPU 1.5 version will support cuDNN 7.0._ version. You can download that from here. Make sure that your CUDA version 9.0._ and cuDNN version 7.0._ . Please refer link in here for more details.
How can I check which version of cuDNN installed? Also, the the link that you provide - the url - containsv7.0.5
andcudnn-9.0
- so I am confused about which version I should have, and which version I am getting.
– Magick
Mar 21 '18 at 12:27
If you are using tensorflow 1.5 it will support to CUDA 9.0._. But you have to chose correct cuDNN version v7.0.5 or v7.0.4 should support.
– Dinusha Dilanka
Mar 21 '18 at 12:38
I am using TF 1.5. How do I find out which version of cuDNN I have installed. And thanks for your help.
– Magick
Mar 21 '18 at 12:43
2
You do not want to find cuDNN version just download v7.0.4 and extract and copy and paste to CUDA folder as they mention in site. I used CUDA 9.0 and cuDNN v7.1._ but it not work and then I changed cuDNN version to v7.0.4 after it was working find.
– Dinusha Dilanka
Mar 21 '18 at 12:51
add a comment |
The problem because of your cuDNN version. Tensorflow-GPU 1.5 version will support cuDNN 7.0._ version. You can download that from here. Make sure that your CUDA version 9.0._ and cuDNN version 7.0._ . Please refer link in here for more details.
How can I check which version of cuDNN installed? Also, the the link that you provide - the url - containsv7.0.5
andcudnn-9.0
- so I am confused about which version I should have, and which version I am getting.
– Magick
Mar 21 '18 at 12:27
If you are using tensorflow 1.5 it will support to CUDA 9.0._. But you have to chose correct cuDNN version v7.0.5 or v7.0.4 should support.
– Dinusha Dilanka
Mar 21 '18 at 12:38
I am using TF 1.5. How do I find out which version of cuDNN I have installed. And thanks for your help.
– Magick
Mar 21 '18 at 12:43
2
You do not want to find cuDNN version just download v7.0.4 and extract and copy and paste to CUDA folder as they mention in site. I used CUDA 9.0 and cuDNN v7.1._ but it not work and then I changed cuDNN version to v7.0.4 after it was working find.
– Dinusha Dilanka
Mar 21 '18 at 12:51
add a comment |
The problem because of your cuDNN version. Tensorflow-GPU 1.5 version will support cuDNN 7.0._ version. You can download that from here. Make sure that your CUDA version 9.0._ and cuDNN version 7.0._ . Please refer link in here for more details.
The problem because of your cuDNN version. Tensorflow-GPU 1.5 version will support cuDNN 7.0._ version. You can download that from here. Make sure that your CUDA version 9.0._ and cuDNN version 7.0._ . Please refer link in here for more details.
edited Mar 21 '18 at 4:58
answered Mar 21 '18 at 4:33
Dinusha DilankaDinusha Dilanka
10711
10711
How can I check which version of cuDNN installed? Also, the the link that you provide - the url - containsv7.0.5
andcudnn-9.0
- so I am confused about which version I should have, and which version I am getting.
– Magick
Mar 21 '18 at 12:27
If you are using tensorflow 1.5 it will support to CUDA 9.0._. But you have to chose correct cuDNN version v7.0.5 or v7.0.4 should support.
– Dinusha Dilanka
Mar 21 '18 at 12:38
I am using TF 1.5. How do I find out which version of cuDNN I have installed. And thanks for your help.
– Magick
Mar 21 '18 at 12:43
2
You do not want to find cuDNN version just download v7.0.4 and extract and copy and paste to CUDA folder as they mention in site. I used CUDA 9.0 and cuDNN v7.1._ but it not work and then I changed cuDNN version to v7.0.4 after it was working find.
– Dinusha Dilanka
Mar 21 '18 at 12:51
add a comment |
How can I check which version of cuDNN installed? Also, the the link that you provide - the url - containsv7.0.5
andcudnn-9.0
- so I am confused about which version I should have, and which version I am getting.
– Magick
Mar 21 '18 at 12:27
If you are using tensorflow 1.5 it will support to CUDA 9.0._. But you have to chose correct cuDNN version v7.0.5 or v7.0.4 should support.
– Dinusha Dilanka
Mar 21 '18 at 12:38
I am using TF 1.5. How do I find out which version of cuDNN I have installed. And thanks for your help.
– Magick
Mar 21 '18 at 12:43
2
You do not want to find cuDNN version just download v7.0.4 and extract and copy and paste to CUDA folder as they mention in site. I used CUDA 9.0 and cuDNN v7.1._ but it not work and then I changed cuDNN version to v7.0.4 after it was working find.
– Dinusha Dilanka
Mar 21 '18 at 12:51
How can I check which version of cuDNN installed? Also, the the link that you provide - the url - contains
v7.0.5
and cudnn-9.0
- so I am confused about which version I should have, and which version I am getting.– Magick
Mar 21 '18 at 12:27
How can I check which version of cuDNN installed? Also, the the link that you provide - the url - contains
v7.0.5
and cudnn-9.0
- so I am confused about which version I should have, and which version I am getting.– Magick
Mar 21 '18 at 12:27
If you are using tensorflow 1.5 it will support to CUDA 9.0._. But you have to chose correct cuDNN version v7.0.5 or v7.0.4 should support.
– Dinusha Dilanka
Mar 21 '18 at 12:38
If you are using tensorflow 1.5 it will support to CUDA 9.0._. But you have to chose correct cuDNN version v7.0.5 or v7.0.4 should support.
– Dinusha Dilanka
Mar 21 '18 at 12:38
I am using TF 1.5. How do I find out which version of cuDNN I have installed. And thanks for your help.
– Magick
Mar 21 '18 at 12:43
I am using TF 1.5. How do I find out which version of cuDNN I have installed. And thanks for your help.
– Magick
Mar 21 '18 at 12:43
2
2
You do not want to find cuDNN version just download v7.0.4 and extract and copy and paste to CUDA folder as they mention in site. I used CUDA 9.0 and cuDNN v7.1._ but it not work and then I changed cuDNN version to v7.0.4 after it was working find.
– Dinusha Dilanka
Mar 21 '18 at 12:51
You do not want to find cuDNN version just download v7.0.4 and extract and copy and paste to CUDA folder as they mention in site. I used CUDA 9.0 and cuDNN v7.1._ but it not work and then I changed cuDNN version to v7.0.4 after it was working find.
– Dinusha Dilanka
Mar 21 '18 at 12:51
add a comment |
It looks like a conflict between CUDA's version and TensorFlow's
First, try to check your CUDA version with one of the commands such as nvcc --version
or cat /usr/local/cuda/version.txt
If that's 8.x, you may need to reinstall CUDA or simpler, downgrade TensorFlow to 1.4. Otherwise, if your CUDA is 9.x, you need TensorFlow 1.5 or newer.
Hope that helps.
Thanks @Dong, I've updated my post with the versions. I am using TF1.5 that should support nvidia 9.
– Magick
Mar 21 '18 at 1:39
I see your log says that it's CUDA 7.5, right? I have a training server with CUDA 8.0, I just tried to replace tensorflow-gpu 1.4 with 1.5 and got the same error as your: i.imgur.com/0rmz2Ds.png In another server I have CUDA 9.0, it works with TensorFlow 1.5 as well: i.imgur.com/P7m0EW7.png So, I still would like to suggest you to try several different versions of tensorflow-gpu to see which one works. As my experience: - TF 1.4 works with CUDA 8.0 - TF 1.5 and 1.6 work with CUDA 9.0 - Nothing work with CUDA 9.1, I've installed it at first, then removed.
– Dong Nguyen
Mar 21 '18 at 4:28
I have cuda-9.0 installed. Butnvcc -V
shows release 7. Are you suggesting that nvcc should be version 9?
– Magick
Mar 21 '18 at 4:36
Something went wrong with your installation. At first time deal with CUDA, I was also confused with it much. Your path looks odd. Not Debian? You may try something likecat /usr/local/cuda/version.txt
to see which output?
– Dong Nguyen
Mar 21 '18 at 4:39
1
If so I have no more idea. However I never run them in docker.
– Dong Nguyen
Mar 21 '18 at 4:53
|
show 1 more comment
It looks like a conflict between CUDA's version and TensorFlow's
First, try to check your CUDA version with one of the commands such as nvcc --version
or cat /usr/local/cuda/version.txt
If that's 8.x, you may need to reinstall CUDA or simpler, downgrade TensorFlow to 1.4. Otherwise, if your CUDA is 9.x, you need TensorFlow 1.5 or newer.
Hope that helps.
Thanks @Dong, I've updated my post with the versions. I am using TF1.5 that should support nvidia 9.
– Magick
Mar 21 '18 at 1:39
I see your log says that it's CUDA 7.5, right? I have a training server with CUDA 8.0, I just tried to replace tensorflow-gpu 1.4 with 1.5 and got the same error as your: i.imgur.com/0rmz2Ds.png In another server I have CUDA 9.0, it works with TensorFlow 1.5 as well: i.imgur.com/P7m0EW7.png So, I still would like to suggest you to try several different versions of tensorflow-gpu to see which one works. As my experience: - TF 1.4 works with CUDA 8.0 - TF 1.5 and 1.6 work with CUDA 9.0 - Nothing work with CUDA 9.1, I've installed it at first, then removed.
– Dong Nguyen
Mar 21 '18 at 4:28
I have cuda-9.0 installed. Butnvcc -V
shows release 7. Are you suggesting that nvcc should be version 9?
– Magick
Mar 21 '18 at 4:36
Something went wrong with your installation. At first time deal with CUDA, I was also confused with it much. Your path looks odd. Not Debian? You may try something likecat /usr/local/cuda/version.txt
to see which output?
– Dong Nguyen
Mar 21 '18 at 4:39
1
If so I have no more idea. However I never run them in docker.
– Dong Nguyen
Mar 21 '18 at 4:53
|
show 1 more comment
It looks like a conflict between CUDA's version and TensorFlow's
First, try to check your CUDA version with one of the commands such as nvcc --version
or cat /usr/local/cuda/version.txt
If that's 8.x, you may need to reinstall CUDA or simpler, downgrade TensorFlow to 1.4. Otherwise, if your CUDA is 9.x, you need TensorFlow 1.5 or newer.
Hope that helps.
It looks like a conflict between CUDA's version and TensorFlow's
First, try to check your CUDA version with one of the commands such as nvcc --version
or cat /usr/local/cuda/version.txt
If that's 8.x, you may need to reinstall CUDA or simpler, downgrade TensorFlow to 1.4. Otherwise, if your CUDA is 9.x, you need TensorFlow 1.5 or newer.
Hope that helps.
answered Mar 21 '18 at 1:31
Dong NguyenDong Nguyen
1,022714
1,022714
Thanks @Dong, I've updated my post with the versions. I am using TF1.5 that should support nvidia 9.
– Magick
Mar 21 '18 at 1:39
I see your log says that it's CUDA 7.5, right? I have a training server with CUDA 8.0, I just tried to replace tensorflow-gpu 1.4 with 1.5 and got the same error as your: i.imgur.com/0rmz2Ds.png In another server I have CUDA 9.0, it works with TensorFlow 1.5 as well: i.imgur.com/P7m0EW7.png So, I still would like to suggest you to try several different versions of tensorflow-gpu to see which one works. As my experience: - TF 1.4 works with CUDA 8.0 - TF 1.5 and 1.6 work with CUDA 9.0 - Nothing work with CUDA 9.1, I've installed it at first, then removed.
– Dong Nguyen
Mar 21 '18 at 4:28
I have cuda-9.0 installed. Butnvcc -V
shows release 7. Are you suggesting that nvcc should be version 9?
– Magick
Mar 21 '18 at 4:36
Something went wrong with your installation. At first time deal with CUDA, I was also confused with it much. Your path looks odd. Not Debian? You may try something likecat /usr/local/cuda/version.txt
to see which output?
– Dong Nguyen
Mar 21 '18 at 4:39
1
If so I have no more idea. However I never run them in docker.
– Dong Nguyen
Mar 21 '18 at 4:53
|
show 1 more comment
Thanks @Dong, I've updated my post with the versions. I am using TF1.5 that should support nvidia 9.
– Magick
Mar 21 '18 at 1:39
I see your log says that it's CUDA 7.5, right? I have a training server with CUDA 8.0, I just tried to replace tensorflow-gpu 1.4 with 1.5 and got the same error as your: i.imgur.com/0rmz2Ds.png In another server I have CUDA 9.0, it works with TensorFlow 1.5 as well: i.imgur.com/P7m0EW7.png So, I still would like to suggest you to try several different versions of tensorflow-gpu to see which one works. As my experience: - TF 1.4 works with CUDA 8.0 - TF 1.5 and 1.6 work with CUDA 9.0 - Nothing work with CUDA 9.1, I've installed it at first, then removed.
– Dong Nguyen
Mar 21 '18 at 4:28
I have cuda-9.0 installed. Butnvcc -V
shows release 7. Are you suggesting that nvcc should be version 9?
– Magick
Mar 21 '18 at 4:36
Something went wrong with your installation. At first time deal with CUDA, I was also confused with it much. Your path looks odd. Not Debian? You may try something likecat /usr/local/cuda/version.txt
to see which output?
– Dong Nguyen
Mar 21 '18 at 4:39
1
If so I have no more idea. However I never run them in docker.
– Dong Nguyen
Mar 21 '18 at 4:53
Thanks @Dong, I've updated my post with the versions. I am using TF1.5 that should support nvidia 9.
– Magick
Mar 21 '18 at 1:39
Thanks @Dong, I've updated my post with the versions. I am using TF1.5 that should support nvidia 9.
– Magick
Mar 21 '18 at 1:39
I see your log says that it's CUDA 7.5, right? I have a training server with CUDA 8.0, I just tried to replace tensorflow-gpu 1.4 with 1.5 and got the same error as your: i.imgur.com/0rmz2Ds.png In another server I have CUDA 9.0, it works with TensorFlow 1.5 as well: i.imgur.com/P7m0EW7.png So, I still would like to suggest you to try several different versions of tensorflow-gpu to see which one works. As my experience: - TF 1.4 works with CUDA 8.0 - TF 1.5 and 1.6 work with CUDA 9.0 - Nothing work with CUDA 9.1, I've installed it at first, then removed.
– Dong Nguyen
Mar 21 '18 at 4:28
I see your log says that it's CUDA 7.5, right? I have a training server with CUDA 8.0, I just tried to replace tensorflow-gpu 1.4 with 1.5 and got the same error as your: i.imgur.com/0rmz2Ds.png In another server I have CUDA 9.0, it works with TensorFlow 1.5 as well: i.imgur.com/P7m0EW7.png So, I still would like to suggest you to try several different versions of tensorflow-gpu to see which one works. As my experience: - TF 1.4 works with CUDA 8.0 - TF 1.5 and 1.6 work with CUDA 9.0 - Nothing work with CUDA 9.1, I've installed it at first, then removed.
– Dong Nguyen
Mar 21 '18 at 4:28
I have cuda-9.0 installed. But
nvcc -V
shows release 7. Are you suggesting that nvcc should be version 9?– Magick
Mar 21 '18 at 4:36
I have cuda-9.0 installed. But
nvcc -V
shows release 7. Are you suggesting that nvcc should be version 9?– Magick
Mar 21 '18 at 4:36
Something went wrong with your installation. At first time deal with CUDA, I was also confused with it much. Your path looks odd. Not Debian? You may try something like
cat /usr/local/cuda/version.txt
to see which output?– Dong Nguyen
Mar 21 '18 at 4:39
Something went wrong with your installation. At first time deal with CUDA, I was also confused with it much. Your path looks odd. Not Debian? You may try something like
cat /usr/local/cuda/version.txt
to see which output?– Dong Nguyen
Mar 21 '18 at 4:39
1
1
If so I have no more idea. However I never run them in docker.
– Dong Nguyen
Mar 21 '18 at 4:53
If so I have no more idea. However I never run them in docker.
– Dong Nguyen
Mar 21 '18 at 4:53
|
show 1 more comment
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f49396659%2fdocker-with-tensorflow-gpu-importerror-libcublas-so-9-0-cannot-open-shared-o%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Did you try to install this way, pip3 install --upgrade tensorflow-gpu?
– Dinusha Dilanka
Mar 22 '18 at 14:49