Bag of features with dense SIFT and SVM - understanding and implementation
My aim is to detect some underwater object - badminton racket among others.
I have over 160 images of this racket laying underwater. I have created binary masks for this racket object (object I want to detect) and then I calculated based on that racket masks the underwater scenery masks (rocks, leafs, etc..,objects I don't want to detect). Now I want to use BOF with dense sift. What I intend to do:
- Create a visual dictionary - compute dense SIFT on the image applying the racket mask and then background mask(on each image I am calculating SIFT two times - for objects I want to detect(racket) and for all other underwater objects
- Having dictionary I have to calculate my SVM train data - so once again for every image I calculate SIFT applying my object mask( and label it 1) and applying background mask(label 0) - I am calculating frequency (histogram) of visual words from the dictionary.
- Object recognition - that part is tricky for me. My trained svm knows the frequencies of dictionary visual words for the racket(label 1) and the background(label 0). Now I have an image i want to test my SVM on - racket laying underwater among some rocks and other things. When I put that data in my SVM it will detect "both frequencies of visual words" - because on the image is my racket, and there is background as well. It is detecting both things. Now how I can prevent that? My idea is to segment image I want to classify on several (10-50) regions and then on each region calculate dense SIFT and then svm prediction based on dense sift on those regions?
Am I right, or I misunderstood something about this BOF method. If I am wrong, how can I achieve my goal. Once again at my disposal, I have a 160 sets of images(original frame, mask on the racket, mask on the background).
opencv image-processing machine-learning svm sift
add a comment |
My aim is to detect some underwater object - badminton racket among others.
I have over 160 images of this racket laying underwater. I have created binary masks for this racket object (object I want to detect) and then I calculated based on that racket masks the underwater scenery masks (rocks, leafs, etc..,objects I don't want to detect). Now I want to use BOF with dense sift. What I intend to do:
- Create a visual dictionary - compute dense SIFT on the image applying the racket mask and then background mask(on each image I am calculating SIFT two times - for objects I want to detect(racket) and for all other underwater objects
- Having dictionary I have to calculate my SVM train data - so once again for every image I calculate SIFT applying my object mask( and label it 1) and applying background mask(label 0) - I am calculating frequency (histogram) of visual words from the dictionary.
- Object recognition - that part is tricky for me. My trained svm knows the frequencies of dictionary visual words for the racket(label 1) and the background(label 0). Now I have an image i want to test my SVM on - racket laying underwater among some rocks and other things. When I put that data in my SVM it will detect "both frequencies of visual words" - because on the image is my racket, and there is background as well. It is detecting both things. Now how I can prevent that? My idea is to segment image I want to classify on several (10-50) regions and then on each region calculate dense SIFT and then svm prediction based on dense sift on those regions?
Am I right, or I misunderstood something about this BOF method. If I am wrong, how can I achieve my goal. Once again at my disposal, I have a 160 sets of images(original frame, mask on the racket, mask on the background).
opencv image-processing machine-learning svm sift
add a comment |
My aim is to detect some underwater object - badminton racket among others.
I have over 160 images of this racket laying underwater. I have created binary masks for this racket object (object I want to detect) and then I calculated based on that racket masks the underwater scenery masks (rocks, leafs, etc..,objects I don't want to detect). Now I want to use BOF with dense sift. What I intend to do:
- Create a visual dictionary - compute dense SIFT on the image applying the racket mask and then background mask(on each image I am calculating SIFT two times - for objects I want to detect(racket) and for all other underwater objects
- Having dictionary I have to calculate my SVM train data - so once again for every image I calculate SIFT applying my object mask( and label it 1) and applying background mask(label 0) - I am calculating frequency (histogram) of visual words from the dictionary.
- Object recognition - that part is tricky for me. My trained svm knows the frequencies of dictionary visual words for the racket(label 1) and the background(label 0). Now I have an image i want to test my SVM on - racket laying underwater among some rocks and other things. When I put that data in my SVM it will detect "both frequencies of visual words" - because on the image is my racket, and there is background as well. It is detecting both things. Now how I can prevent that? My idea is to segment image I want to classify on several (10-50) regions and then on each region calculate dense SIFT and then svm prediction based on dense sift on those regions?
Am I right, or I misunderstood something about this BOF method. If I am wrong, how can I achieve my goal. Once again at my disposal, I have a 160 sets of images(original frame, mask on the racket, mask on the background).
opencv image-processing machine-learning svm sift
My aim is to detect some underwater object - badminton racket among others.
I have over 160 images of this racket laying underwater. I have created binary masks for this racket object (object I want to detect) and then I calculated based on that racket masks the underwater scenery masks (rocks, leafs, etc..,objects I don't want to detect). Now I want to use BOF with dense sift. What I intend to do:
- Create a visual dictionary - compute dense SIFT on the image applying the racket mask and then background mask(on each image I am calculating SIFT two times - for objects I want to detect(racket) and for all other underwater objects
- Having dictionary I have to calculate my SVM train data - so once again for every image I calculate SIFT applying my object mask( and label it 1) and applying background mask(label 0) - I am calculating frequency (histogram) of visual words from the dictionary.
- Object recognition - that part is tricky for me. My trained svm knows the frequencies of dictionary visual words for the racket(label 1) and the background(label 0). Now I have an image i want to test my SVM on - racket laying underwater among some rocks and other things. When I put that data in my SVM it will detect "both frequencies of visual words" - because on the image is my racket, and there is background as well. It is detecting both things. Now how I can prevent that? My idea is to segment image I want to classify on several (10-50) regions and then on each region calculate dense SIFT and then svm prediction based on dense sift on those regions?
Am I right, or I misunderstood something about this BOF method. If I am wrong, how can I achieve my goal. Once again at my disposal, I have a 160 sets of images(original frame, mask on the racket, mask on the background).
opencv image-processing machine-learning svm sift
opencv image-processing machine-learning svm sift
edited Nov 27 '18 at 9:17
Karol Żurowski
asked Nov 27 '18 at 9:06
Karol ŻurowskiKarol Żurowski
170111
170111
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53496065%2fbag-of-features-with-dense-sift-and-svm-understanding-and-implementation%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53496065%2fbag-of-features-with-dense-sift-and-svm-understanding-and-implementation%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown