Why does it take so long to transmit a photo from New-horizon to earth?












1














I just got the news that the new-horizon has passed by some remote planet on the edge of the solar system.



I was surprised that the guy from NASA says that it might take 24 months from us to get the photo of that planet.



The solar system is not that big, right? It is slow because the signal transmission is slow, right? But why is the transmission so slow?










share|improve this question



























    1














    I just got the news that the new-horizon has passed by some remote planet on the edge of the solar system.



    I was surprised that the guy from NASA says that it might take 24 months from us to get the photo of that planet.



    The solar system is not that big, right? It is slow because the signal transmission is slow, right? But why is the transmission so slow?










    share|improve this question

























      1












      1








      1







      I just got the news that the new-horizon has passed by some remote planet on the edge of the solar system.



      I was surprised that the guy from NASA says that it might take 24 months from us to get the photo of that planet.



      The solar system is not that big, right? It is slow because the signal transmission is slow, right? But why is the transmission so slow?










      share|improve this question













      I just got the news that the new-horizon has passed by some remote planet on the edge of the solar system.



      I was surprised that the guy from NASA says that it might take 24 months from us to get the photo of that planet.



      The solar system is not that big, right? It is slow because the signal transmission is slow, right? But why is the transmission so slow?







      solar-system data-analysis nasa






      share|improve this question













      share|improve this question











      share|improve this question




      share|improve this question










      asked 3 hours ago









      S. Kohn

      1663




      1663






















          1 Answer
          1






          active

          oldest

          votes


















          3














          New Horizons has just passed the Kuiper Belt Object (KBO) 2014 MU69 also known as Ultima Thule. KBOs form a belt of asteroids (the Kuiper Belt) from Neptune's orbit outwards and of which Pluto is the largest member of the Belt. During the encounter with Ultima Thule, all of the 7 instruments on New Horizons were gathering data (although not all at the same time) and the total data collected is expected to be about 50 gigabits of data (compared to 55 gigabits of data taken during the Pluto encounter in 2015).



          Since New Horizons is about another billion miles further out than Pluto was and 3 more years have elapsed, there is less power for the (tiny) transmitter and the signals are much weaker. The bit rate is about 1000 bits per second and so the 50 gigabits will indeed take about 19-20 months to transmit everything back. The first image at about 300 meters per pixel resolution and so about 100 pixels across the 30 km KBO, should be received on Jan 1. A second higher resolution image with about 300 pixels across the KBO is expected to be downloaded by Jan 2. There will be a press conference on Jan 2 when these images are due to be released and shown. (more details on what to expect when at Emily Lakdawalla's Planetary Society blog entry)



          After the initial data download, they expect to perform some analysis to see which images have the best data with 2014 MU69 in the frame. Given the uncertainty in the position of 2014 MU69 and the high speed of the encounter, they had to shoot strips of images and not all will contain the target. These data will be prioritized in the downlink so they arrive on the ground first and can be analyzed first.






          share|improve this answer





















            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "514"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: false,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: null,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fastronomy.stackexchange.com%2fquestions%2f28969%2fwhy-does-it-take-so-long-to-transmit-a-photo-from-new-horizon-to-earth%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            3














            New Horizons has just passed the Kuiper Belt Object (KBO) 2014 MU69 also known as Ultima Thule. KBOs form a belt of asteroids (the Kuiper Belt) from Neptune's orbit outwards and of which Pluto is the largest member of the Belt. During the encounter with Ultima Thule, all of the 7 instruments on New Horizons were gathering data (although not all at the same time) and the total data collected is expected to be about 50 gigabits of data (compared to 55 gigabits of data taken during the Pluto encounter in 2015).



            Since New Horizons is about another billion miles further out than Pluto was and 3 more years have elapsed, there is less power for the (tiny) transmitter and the signals are much weaker. The bit rate is about 1000 bits per second and so the 50 gigabits will indeed take about 19-20 months to transmit everything back. The first image at about 300 meters per pixel resolution and so about 100 pixels across the 30 km KBO, should be received on Jan 1. A second higher resolution image with about 300 pixels across the KBO is expected to be downloaded by Jan 2. There will be a press conference on Jan 2 when these images are due to be released and shown. (more details on what to expect when at Emily Lakdawalla's Planetary Society blog entry)



            After the initial data download, they expect to perform some analysis to see which images have the best data with 2014 MU69 in the frame. Given the uncertainty in the position of 2014 MU69 and the high speed of the encounter, they had to shoot strips of images and not all will contain the target. These data will be prioritized in the downlink so they arrive on the ground first and can be analyzed first.






            share|improve this answer


























              3














              New Horizons has just passed the Kuiper Belt Object (KBO) 2014 MU69 also known as Ultima Thule. KBOs form a belt of asteroids (the Kuiper Belt) from Neptune's orbit outwards and of which Pluto is the largest member of the Belt. During the encounter with Ultima Thule, all of the 7 instruments on New Horizons were gathering data (although not all at the same time) and the total data collected is expected to be about 50 gigabits of data (compared to 55 gigabits of data taken during the Pluto encounter in 2015).



              Since New Horizons is about another billion miles further out than Pluto was and 3 more years have elapsed, there is less power for the (tiny) transmitter and the signals are much weaker. The bit rate is about 1000 bits per second and so the 50 gigabits will indeed take about 19-20 months to transmit everything back. The first image at about 300 meters per pixel resolution and so about 100 pixels across the 30 km KBO, should be received on Jan 1. A second higher resolution image with about 300 pixels across the KBO is expected to be downloaded by Jan 2. There will be a press conference on Jan 2 when these images are due to be released and shown. (more details on what to expect when at Emily Lakdawalla's Planetary Society blog entry)



              After the initial data download, they expect to perform some analysis to see which images have the best data with 2014 MU69 in the frame. Given the uncertainty in the position of 2014 MU69 and the high speed of the encounter, they had to shoot strips of images and not all will contain the target. These data will be prioritized in the downlink so they arrive on the ground first and can be analyzed first.






              share|improve this answer
























                3












                3








                3






                New Horizons has just passed the Kuiper Belt Object (KBO) 2014 MU69 also known as Ultima Thule. KBOs form a belt of asteroids (the Kuiper Belt) from Neptune's orbit outwards and of which Pluto is the largest member of the Belt. During the encounter with Ultima Thule, all of the 7 instruments on New Horizons were gathering data (although not all at the same time) and the total data collected is expected to be about 50 gigabits of data (compared to 55 gigabits of data taken during the Pluto encounter in 2015).



                Since New Horizons is about another billion miles further out than Pluto was and 3 more years have elapsed, there is less power for the (tiny) transmitter and the signals are much weaker. The bit rate is about 1000 bits per second and so the 50 gigabits will indeed take about 19-20 months to transmit everything back. The first image at about 300 meters per pixel resolution and so about 100 pixels across the 30 km KBO, should be received on Jan 1. A second higher resolution image with about 300 pixels across the KBO is expected to be downloaded by Jan 2. There will be a press conference on Jan 2 when these images are due to be released and shown. (more details on what to expect when at Emily Lakdawalla's Planetary Society blog entry)



                After the initial data download, they expect to perform some analysis to see which images have the best data with 2014 MU69 in the frame. Given the uncertainty in the position of 2014 MU69 and the high speed of the encounter, they had to shoot strips of images and not all will contain the target. These data will be prioritized in the downlink so they arrive on the ground first and can be analyzed first.






                share|improve this answer












                New Horizons has just passed the Kuiper Belt Object (KBO) 2014 MU69 also known as Ultima Thule. KBOs form a belt of asteroids (the Kuiper Belt) from Neptune's orbit outwards and of which Pluto is the largest member of the Belt. During the encounter with Ultima Thule, all of the 7 instruments on New Horizons were gathering data (although not all at the same time) and the total data collected is expected to be about 50 gigabits of data (compared to 55 gigabits of data taken during the Pluto encounter in 2015).



                Since New Horizons is about another billion miles further out than Pluto was and 3 more years have elapsed, there is less power for the (tiny) transmitter and the signals are much weaker. The bit rate is about 1000 bits per second and so the 50 gigabits will indeed take about 19-20 months to transmit everything back. The first image at about 300 meters per pixel resolution and so about 100 pixels across the 30 km KBO, should be received on Jan 1. A second higher resolution image with about 300 pixels across the KBO is expected to be downloaded by Jan 2. There will be a press conference on Jan 2 when these images are due to be released and shown. (more details on what to expect when at Emily Lakdawalla's Planetary Society blog entry)



                After the initial data download, they expect to perform some analysis to see which images have the best data with 2014 MU69 in the frame. Given the uncertainty in the position of 2014 MU69 and the high speed of the encounter, they had to shoot strips of images and not all will contain the target. These data will be prioritized in the downlink so they arrive on the ground first and can be analyzed first.







                share|improve this answer












                share|improve this answer



                share|improve this answer










                answered 1 hour ago









                astrosnapper

                1,752419




                1,752419






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Astronomy Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.





                    Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


                    Please pay close attention to the following guidance:


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fastronomy.stackexchange.com%2fquestions%2f28969%2fwhy-does-it-take-so-long-to-transmit-a-photo-from-new-horizon-to-earth%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    A CLEAN and SIMPLE way to add appendices to Table of Contents and bookmarks

                    Calculate evaluation metrics using cross_val_predict sklearn

                    Insert data from modal to MySQL (multiple modal on website)