Triple integral of portion of cone (cylindrical polar coordinates)?











up vote
3
down vote

favorite












$V$ is the portion of the cone $z=sqrt{x^2+y^2};$ for $; xgeq 0.$
Find $$intintlimits_{V}int xe^{-z} dV.$$
I am trying to solve this question. The answer is supposed to be just $4.$



I have worked out the limits as



$0leq z leq infty;$ and
$;-pi/2leq theta leq pi/2;$ and $;0leq R leq z.$ What am I doing wrong?










share|cite|improve this question




















  • 2




    Please check if I've edited it correctly.
    – user376343
    4 hours ago












  • yes, thankyou. For future, how does one use latex here?
    – Pumpkinpeach
    4 hours ago










  • We are curious to know what the issue was with the evaluation.
    – gimusi
    4 hours ago










  • @Pumpkinpeach Refer to MathJax basic tutorial and quick reference
    – gimusi
    4 hours ago










  • @gimusi for the calculation for integral of z^3e^-z as in @ lucky's answer below (line 5) I got z^4/4 (e^-z) and if I evaluate that between z limits I got 0?
    – Pumpkinpeach
    3 hours ago















up vote
3
down vote

favorite












$V$ is the portion of the cone $z=sqrt{x^2+y^2};$ for $; xgeq 0.$
Find $$intintlimits_{V}int xe^{-z} dV.$$
I am trying to solve this question. The answer is supposed to be just $4.$



I have worked out the limits as



$0leq z leq infty;$ and
$;-pi/2leq theta leq pi/2;$ and $;0leq R leq z.$ What am I doing wrong?










share|cite|improve this question




















  • 2




    Please check if I've edited it correctly.
    – user376343
    4 hours ago












  • yes, thankyou. For future, how does one use latex here?
    – Pumpkinpeach
    4 hours ago










  • We are curious to know what the issue was with the evaluation.
    – gimusi
    4 hours ago










  • @Pumpkinpeach Refer to MathJax basic tutorial and quick reference
    – gimusi
    4 hours ago










  • @gimusi for the calculation for integral of z^3e^-z as in @ lucky's answer below (line 5) I got z^4/4 (e^-z) and if I evaluate that between z limits I got 0?
    – Pumpkinpeach
    3 hours ago













up vote
3
down vote

favorite









up vote
3
down vote

favorite











$V$ is the portion of the cone $z=sqrt{x^2+y^2};$ for $; xgeq 0.$
Find $$intintlimits_{V}int xe^{-z} dV.$$
I am trying to solve this question. The answer is supposed to be just $4.$



I have worked out the limits as



$0leq z leq infty;$ and
$;-pi/2leq theta leq pi/2;$ and $;0leq R leq z.$ What am I doing wrong?










share|cite|improve this question















$V$ is the portion of the cone $z=sqrt{x^2+y^2};$ for $; xgeq 0.$
Find $$intintlimits_{V}int xe^{-z} dV.$$
I am trying to solve this question. The answer is supposed to be just $4.$



I have worked out the limits as



$0leq z leq infty;$ and
$;-pi/2leq theta leq pi/2;$ and $;0leq R leq z.$ What am I doing wrong?







calculus multivariable-calculus






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 4 hours ago









user376343

2,6432819




2,6432819










asked 4 hours ago









Pumpkinpeach

566




566








  • 2




    Please check if I've edited it correctly.
    – user376343
    4 hours ago












  • yes, thankyou. For future, how does one use latex here?
    – Pumpkinpeach
    4 hours ago










  • We are curious to know what the issue was with the evaluation.
    – gimusi
    4 hours ago










  • @Pumpkinpeach Refer to MathJax basic tutorial and quick reference
    – gimusi
    4 hours ago










  • @gimusi for the calculation for integral of z^3e^-z as in @ lucky's answer below (line 5) I got z^4/4 (e^-z) and if I evaluate that between z limits I got 0?
    – Pumpkinpeach
    3 hours ago














  • 2




    Please check if I've edited it correctly.
    – user376343
    4 hours ago












  • yes, thankyou. For future, how does one use latex here?
    – Pumpkinpeach
    4 hours ago










  • We are curious to know what the issue was with the evaluation.
    – gimusi
    4 hours ago










  • @Pumpkinpeach Refer to MathJax basic tutorial and quick reference
    – gimusi
    4 hours ago










  • @gimusi for the calculation for integral of z^3e^-z as in @ lucky's answer below (line 5) I got z^4/4 (e^-z) and if I evaluate that between z limits I got 0?
    – Pumpkinpeach
    3 hours ago








2




2




Please check if I've edited it correctly.
– user376343
4 hours ago






Please check if I've edited it correctly.
– user376343
4 hours ago














yes, thankyou. For future, how does one use latex here?
– Pumpkinpeach
4 hours ago




yes, thankyou. For future, how does one use latex here?
– Pumpkinpeach
4 hours ago












We are curious to know what the issue was with the evaluation.
– gimusi
4 hours ago




We are curious to know what the issue was with the evaluation.
– gimusi
4 hours ago












@Pumpkinpeach Refer to MathJax basic tutorial and quick reference
– gimusi
4 hours ago




@Pumpkinpeach Refer to MathJax basic tutorial and quick reference
– gimusi
4 hours ago












@gimusi for the calculation for integral of z^3e^-z as in @ lucky's answer below (line 5) I got z^4/4 (e^-z) and if I evaluate that between z limits I got 0?
– Pumpkinpeach
3 hours ago




@gimusi for the calculation for integral of z^3e^-z as in @ lucky's answer below (line 5) I got z^4/4 (e^-z) and if I evaluate that between z limits I got 0?
– Pumpkinpeach
3 hours ago










2 Answers
2






active

oldest

votes

















up vote
3
down vote













With the bounds you have stated, the integral is in fact finite:
begin{align*}
iiint_Vxe^{-z}dV&=int_{-frac{pi}{2}}^{frac{pi}{2}}int_0^inftyint_0^ze^{-z}r^2costheta,drdzdtheta\
&=int_{-frac{pi}{2}}^{frac{pi}{2}}int_0^inftyfrac{z^3}{3}e^{-z}costheta, rdrdzdtheta\
&=frac{1}{3}int_{-frac{pi}{2}}^{frac{pi}{2}}left(-e^{-z}(z^3+3z^2+3z+6)right)bigrvert_0^inftycostheta, rdrdzdtheta\
&=frac{1}{3}int_{-frac{pi}{2}}^{frac{pi}{2}}6costheta, rdrdzdtheta\
&=2(sintheta)bigrvert_{-frac{pi}{2}}^{frac{pi}{2}}\
&=4
end{align*}

The $z$ integration requires integrating by parts a few times, and then taking a limit.






share|cite|improve this answer





















  • Thanks! Can I ask how you got −e−z(z3+3z2+3z+6) in line 3? Is that just a condensed version of the by parts?
    – Pumpkinpeach
    3 hours ago










  • Yes. I did it by parts by hand... then checked good old Wolfram Alpha to make sure I had not made a silly mistake, which had simplified it a bit.
    – Lucky
    3 hours ago


















up vote
2
down vote













According to the limit you have indicate, which seems to be correct, we should have



$$intintlimits_{V}int xe^{-z} dV=int_0^infty dz int_{-pi/2}^{pi/2} dtheta int_0^z R^2cos theta e^{-z}dR$$



Maybe you forgot the $R ,dR ,dz ,dtheta$ term or simply you have made a wrong evaluation.



Note that the one presented here works fine: Integral evaluation.






share|cite|improve this answer

















  • 1




    $dV=rdrdzdtheta$ is correct. The Jacobian is just $r$.
    – Lucky
    4 hours ago













Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3030394%2ftriple-integral-of-portion-of-cone-cylindrical-polar-coordinates%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























2 Answers
2






active

oldest

votes








2 Answers
2






active

oldest

votes









active

oldest

votes






active

oldest

votes








up vote
3
down vote













With the bounds you have stated, the integral is in fact finite:
begin{align*}
iiint_Vxe^{-z}dV&=int_{-frac{pi}{2}}^{frac{pi}{2}}int_0^inftyint_0^ze^{-z}r^2costheta,drdzdtheta\
&=int_{-frac{pi}{2}}^{frac{pi}{2}}int_0^inftyfrac{z^3}{3}e^{-z}costheta, rdrdzdtheta\
&=frac{1}{3}int_{-frac{pi}{2}}^{frac{pi}{2}}left(-e^{-z}(z^3+3z^2+3z+6)right)bigrvert_0^inftycostheta, rdrdzdtheta\
&=frac{1}{3}int_{-frac{pi}{2}}^{frac{pi}{2}}6costheta, rdrdzdtheta\
&=2(sintheta)bigrvert_{-frac{pi}{2}}^{frac{pi}{2}}\
&=4
end{align*}

The $z$ integration requires integrating by parts a few times, and then taking a limit.






share|cite|improve this answer





















  • Thanks! Can I ask how you got −e−z(z3+3z2+3z+6) in line 3? Is that just a condensed version of the by parts?
    – Pumpkinpeach
    3 hours ago










  • Yes. I did it by parts by hand... then checked good old Wolfram Alpha to make sure I had not made a silly mistake, which had simplified it a bit.
    – Lucky
    3 hours ago















up vote
3
down vote













With the bounds you have stated, the integral is in fact finite:
begin{align*}
iiint_Vxe^{-z}dV&=int_{-frac{pi}{2}}^{frac{pi}{2}}int_0^inftyint_0^ze^{-z}r^2costheta,drdzdtheta\
&=int_{-frac{pi}{2}}^{frac{pi}{2}}int_0^inftyfrac{z^3}{3}e^{-z}costheta, rdrdzdtheta\
&=frac{1}{3}int_{-frac{pi}{2}}^{frac{pi}{2}}left(-e^{-z}(z^3+3z^2+3z+6)right)bigrvert_0^inftycostheta, rdrdzdtheta\
&=frac{1}{3}int_{-frac{pi}{2}}^{frac{pi}{2}}6costheta, rdrdzdtheta\
&=2(sintheta)bigrvert_{-frac{pi}{2}}^{frac{pi}{2}}\
&=4
end{align*}

The $z$ integration requires integrating by parts a few times, and then taking a limit.






share|cite|improve this answer





















  • Thanks! Can I ask how you got −e−z(z3+3z2+3z+6) in line 3? Is that just a condensed version of the by parts?
    – Pumpkinpeach
    3 hours ago










  • Yes. I did it by parts by hand... then checked good old Wolfram Alpha to make sure I had not made a silly mistake, which had simplified it a bit.
    – Lucky
    3 hours ago













up vote
3
down vote










up vote
3
down vote









With the bounds you have stated, the integral is in fact finite:
begin{align*}
iiint_Vxe^{-z}dV&=int_{-frac{pi}{2}}^{frac{pi}{2}}int_0^inftyint_0^ze^{-z}r^2costheta,drdzdtheta\
&=int_{-frac{pi}{2}}^{frac{pi}{2}}int_0^inftyfrac{z^3}{3}e^{-z}costheta, rdrdzdtheta\
&=frac{1}{3}int_{-frac{pi}{2}}^{frac{pi}{2}}left(-e^{-z}(z^3+3z^2+3z+6)right)bigrvert_0^inftycostheta, rdrdzdtheta\
&=frac{1}{3}int_{-frac{pi}{2}}^{frac{pi}{2}}6costheta, rdrdzdtheta\
&=2(sintheta)bigrvert_{-frac{pi}{2}}^{frac{pi}{2}}\
&=4
end{align*}

The $z$ integration requires integrating by parts a few times, and then taking a limit.






share|cite|improve this answer












With the bounds you have stated, the integral is in fact finite:
begin{align*}
iiint_Vxe^{-z}dV&=int_{-frac{pi}{2}}^{frac{pi}{2}}int_0^inftyint_0^ze^{-z}r^2costheta,drdzdtheta\
&=int_{-frac{pi}{2}}^{frac{pi}{2}}int_0^inftyfrac{z^3}{3}e^{-z}costheta, rdrdzdtheta\
&=frac{1}{3}int_{-frac{pi}{2}}^{frac{pi}{2}}left(-e^{-z}(z^3+3z^2+3z+6)right)bigrvert_0^inftycostheta, rdrdzdtheta\
&=frac{1}{3}int_{-frac{pi}{2}}^{frac{pi}{2}}6costheta, rdrdzdtheta\
&=2(sintheta)bigrvert_{-frac{pi}{2}}^{frac{pi}{2}}\
&=4
end{align*}

The $z$ integration requires integrating by parts a few times, and then taking a limit.







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered 4 hours ago









Lucky

14414




14414












  • Thanks! Can I ask how you got −e−z(z3+3z2+3z+6) in line 3? Is that just a condensed version of the by parts?
    – Pumpkinpeach
    3 hours ago










  • Yes. I did it by parts by hand... then checked good old Wolfram Alpha to make sure I had not made a silly mistake, which had simplified it a bit.
    – Lucky
    3 hours ago


















  • Thanks! Can I ask how you got −e−z(z3+3z2+3z+6) in line 3? Is that just a condensed version of the by parts?
    – Pumpkinpeach
    3 hours ago










  • Yes. I did it by parts by hand... then checked good old Wolfram Alpha to make sure I had not made a silly mistake, which had simplified it a bit.
    – Lucky
    3 hours ago
















Thanks! Can I ask how you got −e−z(z3+3z2+3z+6) in line 3? Is that just a condensed version of the by parts?
– Pumpkinpeach
3 hours ago




Thanks! Can I ask how you got −e−z(z3+3z2+3z+6) in line 3? Is that just a condensed version of the by parts?
– Pumpkinpeach
3 hours ago












Yes. I did it by parts by hand... then checked good old Wolfram Alpha to make sure I had not made a silly mistake, which had simplified it a bit.
– Lucky
3 hours ago




Yes. I did it by parts by hand... then checked good old Wolfram Alpha to make sure I had not made a silly mistake, which had simplified it a bit.
– Lucky
3 hours ago










up vote
2
down vote













According to the limit you have indicate, which seems to be correct, we should have



$$intintlimits_{V}int xe^{-z} dV=int_0^infty dz int_{-pi/2}^{pi/2} dtheta int_0^z R^2cos theta e^{-z}dR$$



Maybe you forgot the $R ,dR ,dz ,dtheta$ term or simply you have made a wrong evaluation.



Note that the one presented here works fine: Integral evaluation.






share|cite|improve this answer

















  • 1




    $dV=rdrdzdtheta$ is correct. The Jacobian is just $r$.
    – Lucky
    4 hours ago

















up vote
2
down vote













According to the limit you have indicate, which seems to be correct, we should have



$$intintlimits_{V}int xe^{-z} dV=int_0^infty dz int_{-pi/2}^{pi/2} dtheta int_0^z R^2cos theta e^{-z}dR$$



Maybe you forgot the $R ,dR ,dz ,dtheta$ term or simply you have made a wrong evaluation.



Note that the one presented here works fine: Integral evaluation.






share|cite|improve this answer

















  • 1




    $dV=rdrdzdtheta$ is correct. The Jacobian is just $r$.
    – Lucky
    4 hours ago















up vote
2
down vote










up vote
2
down vote









According to the limit you have indicate, which seems to be correct, we should have



$$intintlimits_{V}int xe^{-z} dV=int_0^infty dz int_{-pi/2}^{pi/2} dtheta int_0^z R^2cos theta e^{-z}dR$$



Maybe you forgot the $R ,dR ,dz ,dtheta$ term or simply you have made a wrong evaluation.



Note that the one presented here works fine: Integral evaluation.






share|cite|improve this answer












According to the limit you have indicate, which seems to be correct, we should have



$$intintlimits_{V}int xe^{-z} dV=int_0^infty dz int_{-pi/2}^{pi/2} dtheta int_0^z R^2cos theta e^{-z}dR$$



Maybe you forgot the $R ,dR ,dz ,dtheta$ term or simply you have made a wrong evaluation.



Note that the one presented here works fine: Integral evaluation.







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered 4 hours ago









gimusi

90.6k74495




90.6k74495








  • 1




    $dV=rdrdzdtheta$ is correct. The Jacobian is just $r$.
    – Lucky
    4 hours ago
















  • 1




    $dV=rdrdzdtheta$ is correct. The Jacobian is just $r$.
    – Lucky
    4 hours ago










1




1




$dV=rdrdzdtheta$ is correct. The Jacobian is just $r$.
– Lucky
4 hours ago






$dV=rdrdzdtheta$ is correct. The Jacobian is just $r$.
– Lucky
4 hours ago




















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.





Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


Please pay close attention to the following guidance:


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3030394%2ftriple-integral-of-portion-of-cone-cylindrical-polar-coordinates%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

A CLEAN and SIMPLE way to add appendices to Table of Contents and bookmarks

Calculate evaluation metrics using cross_val_predict sklearn

Insert data from modal to MySQL (multiple modal on website)