Remove strings based on condition pandas dataframe column












1














I have the following data:



df = pd.DataFrame({ 'Column_A': [1,2,3,4],
'Column_B': [["X1", "X2", "Y1"],
["X3", "Y2"],
["X4", "X5"],
["X5", "Y3", "Y4"]],})

Column_A Column_B
0 1 [X1, X2, Y1]
1 2 [X3, Y2]
2 3 [X4, X5]
3 4 [X5, Y3, Y4]


I wish to remove all strings starting with Y in the second column. Desired output:



   Column_A  Column_B
0 1 [X1, X2]
1 2 [X3]
2 3 [X4, X5]
3 4 [X5]









share|improve this question



























    1














    I have the following data:



    df = pd.DataFrame({ 'Column_A': [1,2,3,4],
    'Column_B': [["X1", "X2", "Y1"],
    ["X3", "Y2"],
    ["X4", "X5"],
    ["X5", "Y3", "Y4"]],})

    Column_A Column_B
    0 1 [X1, X2, Y1]
    1 2 [X3, Y2]
    2 3 [X4, X5]
    3 4 [X5, Y3, Y4]


    I wish to remove all strings starting with Y in the second column. Desired output:



       Column_A  Column_B
    0 1 [X1, X2]
    1 2 [X3]
    2 3 [X4, X5]
    3 4 [X5]









    share|improve this question

























      1












      1








      1







      I have the following data:



      df = pd.DataFrame({ 'Column_A': [1,2,3,4],
      'Column_B': [["X1", "X2", "Y1"],
      ["X3", "Y2"],
      ["X4", "X5"],
      ["X5", "Y3", "Y4"]],})

      Column_A Column_B
      0 1 [X1, X2, Y1]
      1 2 [X3, Y2]
      2 3 [X4, X5]
      3 4 [X5, Y3, Y4]


      I wish to remove all strings starting with Y in the second column. Desired output:



         Column_A  Column_B
      0 1 [X1, X2]
      1 2 [X3]
      2 3 [X4, X5]
      3 4 [X5]









      share|improve this question













      I have the following data:



      df = pd.DataFrame({ 'Column_A': [1,2,3,4],
      'Column_B': [["X1", "X2", "Y1"],
      ["X3", "Y2"],
      ["X4", "X5"],
      ["X5", "Y3", "Y4"]],})

      Column_A Column_B
      0 1 [X1, X2, Y1]
      1 2 [X3, Y2]
      2 3 [X4, X5]
      3 4 [X5, Y3, Y4]


      I wish to remove all strings starting with Y in the second column. Desired output:



         Column_A  Column_B
      0 1 [X1, X2]
      1 2 [X3]
      2 3 [X4, X5]
      3 4 [X5]






      python string pandas dataframe






      share|improve this question













      share|improve this question











      share|improve this question




      share|improve this question










      asked Nov 23 '18 at 11:06









      prmlmu

      816




      816
























          1 Answer
          1






          active

          oldest

          votes


















          2














          Use nested list comprehension with filtering with startswith:



          df['Column_B'] = [[y for y in x if not y.startswith('Y')] for x in df['Column_B']]


          apply alternative:



          df['Column_B'] = df['Column_B'].apply(lambda x: [y for y in x if not y.startswith('Y')])


          Or use filter:



          df['Column_B'] = [list(filter(lambda y: not y.startswith('Y'), x)) for x in df['Column_B']]




          print (df)
          Column_A Column_B
          0 1 [X1, X2]
          1 2 [X3]
          2 3 [X4, X5]
          3 4 [X5]


          Performance:



          Depends of number of rows, number of values in lists and number of matched values:



          #[40000 rows x 2 columns]
          df = pd.concat([df] * 10000, ignore_index=True)
          #print (df)


          In [142]: %timeit df['Column_B'] = [[y for y in x if not y.startswith('Y')] for x in df['Column_B']]
          23.7 ms ± 410 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)

          In [143]: %timeit df['Column_B'] = [list(filter(lambda y: not y.startswith('Y'), x)) for x in df['Column_B']]
          36.5 ms ± 204 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)

          In [144]: %timeit df['Column_B'] = df['Column_B'].apply(lambda x: [y for y in x if not y.startswith('Y')])
          30.4 ms ± 1.86 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)





          share|improve this answer























            Your Answer






            StackExchange.ifUsing("editor", function () {
            StackExchange.using("externalEditor", function () {
            StackExchange.using("snippets", function () {
            StackExchange.snippets.init();
            });
            });
            }, "code-snippets");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "1"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53445542%2fremove-strings-based-on-condition-pandas-dataframe-column%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            2














            Use nested list comprehension with filtering with startswith:



            df['Column_B'] = [[y for y in x if not y.startswith('Y')] for x in df['Column_B']]


            apply alternative:



            df['Column_B'] = df['Column_B'].apply(lambda x: [y for y in x if not y.startswith('Y')])


            Or use filter:



            df['Column_B'] = [list(filter(lambda y: not y.startswith('Y'), x)) for x in df['Column_B']]




            print (df)
            Column_A Column_B
            0 1 [X1, X2]
            1 2 [X3]
            2 3 [X4, X5]
            3 4 [X5]


            Performance:



            Depends of number of rows, number of values in lists and number of matched values:



            #[40000 rows x 2 columns]
            df = pd.concat([df] * 10000, ignore_index=True)
            #print (df)


            In [142]: %timeit df['Column_B'] = [[y for y in x if not y.startswith('Y')] for x in df['Column_B']]
            23.7 ms ± 410 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)

            In [143]: %timeit df['Column_B'] = [list(filter(lambda y: not y.startswith('Y'), x)) for x in df['Column_B']]
            36.5 ms ± 204 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)

            In [144]: %timeit df['Column_B'] = df['Column_B'].apply(lambda x: [y for y in x if not y.startswith('Y')])
            30.4 ms ± 1.86 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)





            share|improve this answer




























              2














              Use nested list comprehension with filtering with startswith:



              df['Column_B'] = [[y for y in x if not y.startswith('Y')] for x in df['Column_B']]


              apply alternative:



              df['Column_B'] = df['Column_B'].apply(lambda x: [y for y in x if not y.startswith('Y')])


              Or use filter:



              df['Column_B'] = [list(filter(lambda y: not y.startswith('Y'), x)) for x in df['Column_B']]




              print (df)
              Column_A Column_B
              0 1 [X1, X2]
              1 2 [X3]
              2 3 [X4, X5]
              3 4 [X5]


              Performance:



              Depends of number of rows, number of values in lists and number of matched values:



              #[40000 rows x 2 columns]
              df = pd.concat([df] * 10000, ignore_index=True)
              #print (df)


              In [142]: %timeit df['Column_B'] = [[y for y in x if not y.startswith('Y')] for x in df['Column_B']]
              23.7 ms ± 410 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)

              In [143]: %timeit df['Column_B'] = [list(filter(lambda y: not y.startswith('Y'), x)) for x in df['Column_B']]
              36.5 ms ± 204 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)

              In [144]: %timeit df['Column_B'] = df['Column_B'].apply(lambda x: [y for y in x if not y.startswith('Y')])
              30.4 ms ± 1.86 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)





              share|improve this answer


























                2












                2








                2






                Use nested list comprehension with filtering with startswith:



                df['Column_B'] = [[y for y in x if not y.startswith('Y')] for x in df['Column_B']]


                apply alternative:



                df['Column_B'] = df['Column_B'].apply(lambda x: [y for y in x if not y.startswith('Y')])


                Or use filter:



                df['Column_B'] = [list(filter(lambda y: not y.startswith('Y'), x)) for x in df['Column_B']]




                print (df)
                Column_A Column_B
                0 1 [X1, X2]
                1 2 [X3]
                2 3 [X4, X5]
                3 4 [X5]


                Performance:



                Depends of number of rows, number of values in lists and number of matched values:



                #[40000 rows x 2 columns]
                df = pd.concat([df] * 10000, ignore_index=True)
                #print (df)


                In [142]: %timeit df['Column_B'] = [[y for y in x if not y.startswith('Y')] for x in df['Column_B']]
                23.7 ms ± 410 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)

                In [143]: %timeit df['Column_B'] = [list(filter(lambda y: not y.startswith('Y'), x)) for x in df['Column_B']]
                36.5 ms ± 204 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)

                In [144]: %timeit df['Column_B'] = df['Column_B'].apply(lambda x: [y for y in x if not y.startswith('Y')])
                30.4 ms ± 1.86 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)





                share|improve this answer














                Use nested list comprehension with filtering with startswith:



                df['Column_B'] = [[y for y in x if not y.startswith('Y')] for x in df['Column_B']]


                apply alternative:



                df['Column_B'] = df['Column_B'].apply(lambda x: [y for y in x if not y.startswith('Y')])


                Or use filter:



                df['Column_B'] = [list(filter(lambda y: not y.startswith('Y'), x)) for x in df['Column_B']]




                print (df)
                Column_A Column_B
                0 1 [X1, X2]
                1 2 [X3]
                2 3 [X4, X5]
                3 4 [X5]


                Performance:



                Depends of number of rows, number of values in lists and number of matched values:



                #[40000 rows x 2 columns]
                df = pd.concat([df] * 10000, ignore_index=True)
                #print (df)


                In [142]: %timeit df['Column_B'] = [[y for y in x if not y.startswith('Y')] for x in df['Column_B']]
                23.7 ms ± 410 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)

                In [143]: %timeit df['Column_B'] = [list(filter(lambda y: not y.startswith('Y'), x)) for x in df['Column_B']]
                36.5 ms ± 204 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)

                In [144]: %timeit df['Column_B'] = df['Column_B'].apply(lambda x: [y for y in x if not y.startswith('Y')])
                30.4 ms ± 1.86 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)






                share|improve this answer














                share|improve this answer



                share|improve this answer








                edited Nov 23 '18 at 11:15

























                answered Nov 23 '18 at 11:09









                jezrael

                320k22259338




                320k22259338






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Stack Overflow!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    To learn more, see our tips on writing great answers.





                    Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


                    Please pay close attention to the following guidance:


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53445542%2fremove-strings-based-on-condition-pandas-dataframe-column%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    A CLEAN and SIMPLE way to add appendices to Table of Contents and bookmarks

                    Calculate evaluation metrics using cross_val_predict sklearn

                    Insert data from modal to MySQL (multiple modal on website)