Remove strings based on condition pandas dataframe column
I have the following data:
df = pd.DataFrame({ 'Column_A': [1,2,3,4],
'Column_B': [["X1", "X2", "Y1"],
["X3", "Y2"],
["X4", "X5"],
["X5", "Y3", "Y4"]],})
Column_A Column_B
0 1 [X1, X2, Y1]
1 2 [X3, Y2]
2 3 [X4, X5]
3 4 [X5, Y3, Y4]
I wish to remove all strings starting with Y in the second column. Desired output:
Column_A Column_B
0 1 [X1, X2]
1 2 [X3]
2 3 [X4, X5]
3 4 [X5]
python string pandas dataframe
add a comment |
I have the following data:
df = pd.DataFrame({ 'Column_A': [1,2,3,4],
'Column_B': [["X1", "X2", "Y1"],
["X3", "Y2"],
["X4", "X5"],
["X5", "Y3", "Y4"]],})
Column_A Column_B
0 1 [X1, X2, Y1]
1 2 [X3, Y2]
2 3 [X4, X5]
3 4 [X5, Y3, Y4]
I wish to remove all strings starting with Y in the second column. Desired output:
Column_A Column_B
0 1 [X1, X2]
1 2 [X3]
2 3 [X4, X5]
3 4 [X5]
python string pandas dataframe
add a comment |
I have the following data:
df = pd.DataFrame({ 'Column_A': [1,2,3,4],
'Column_B': [["X1", "X2", "Y1"],
["X3", "Y2"],
["X4", "X5"],
["X5", "Y3", "Y4"]],})
Column_A Column_B
0 1 [X1, X2, Y1]
1 2 [X3, Y2]
2 3 [X4, X5]
3 4 [X5, Y3, Y4]
I wish to remove all strings starting with Y in the second column. Desired output:
Column_A Column_B
0 1 [X1, X2]
1 2 [X3]
2 3 [X4, X5]
3 4 [X5]
python string pandas dataframe
I have the following data:
df = pd.DataFrame({ 'Column_A': [1,2,3,4],
'Column_B': [["X1", "X2", "Y1"],
["X3", "Y2"],
["X4", "X5"],
["X5", "Y3", "Y4"]],})
Column_A Column_B
0 1 [X1, X2, Y1]
1 2 [X3, Y2]
2 3 [X4, X5]
3 4 [X5, Y3, Y4]
I wish to remove all strings starting with Y in the second column. Desired output:
Column_A Column_B
0 1 [X1, X2]
1 2 [X3]
2 3 [X4, X5]
3 4 [X5]
python string pandas dataframe
python string pandas dataframe
asked Nov 23 '18 at 11:06
prmlmu
816
816
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
Use nested list comprehension with filtering with startswith
:
df['Column_B'] = [[y for y in x if not y.startswith('Y')] for x in df['Column_B']]
apply
alternative:
df['Column_B'] = df['Column_B'].apply(lambda x: [y for y in x if not y.startswith('Y')])
Or use filter
:
df['Column_B'] = [list(filter(lambda y: not y.startswith('Y'), x)) for x in df['Column_B']]
print (df)
Column_A Column_B
0 1 [X1, X2]
1 2 [X3]
2 3 [X4, X5]
3 4 [X5]
Performance:
Depends of number of rows, number of values in lists and number of matched values:
#[40000 rows x 2 columns]
df = pd.concat([df] * 10000, ignore_index=True)
#print (df)
In [142]: %timeit df['Column_B'] = [[y for y in x if not y.startswith('Y')] for x in df['Column_B']]
23.7 ms ± 410 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
In [143]: %timeit df['Column_B'] = [list(filter(lambda y: not y.startswith('Y'), x)) for x in df['Column_B']]
36.5 ms ± 204 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
In [144]: %timeit df['Column_B'] = df['Column_B'].apply(lambda x: [y for y in x if not y.startswith('Y')])
30.4 ms ± 1.86 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53445542%2fremove-strings-based-on-condition-pandas-dataframe-column%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
Use nested list comprehension with filtering with startswith
:
df['Column_B'] = [[y for y in x if not y.startswith('Y')] for x in df['Column_B']]
apply
alternative:
df['Column_B'] = df['Column_B'].apply(lambda x: [y for y in x if not y.startswith('Y')])
Or use filter
:
df['Column_B'] = [list(filter(lambda y: not y.startswith('Y'), x)) for x in df['Column_B']]
print (df)
Column_A Column_B
0 1 [X1, X2]
1 2 [X3]
2 3 [X4, X5]
3 4 [X5]
Performance:
Depends of number of rows, number of values in lists and number of matched values:
#[40000 rows x 2 columns]
df = pd.concat([df] * 10000, ignore_index=True)
#print (df)
In [142]: %timeit df['Column_B'] = [[y for y in x if not y.startswith('Y')] for x in df['Column_B']]
23.7 ms ± 410 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
In [143]: %timeit df['Column_B'] = [list(filter(lambda y: not y.startswith('Y'), x)) for x in df['Column_B']]
36.5 ms ± 204 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
In [144]: %timeit df['Column_B'] = df['Column_B'].apply(lambda x: [y for y in x if not y.startswith('Y')])
30.4 ms ± 1.86 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
add a comment |
Use nested list comprehension with filtering with startswith
:
df['Column_B'] = [[y for y in x if not y.startswith('Y')] for x in df['Column_B']]
apply
alternative:
df['Column_B'] = df['Column_B'].apply(lambda x: [y for y in x if not y.startswith('Y')])
Or use filter
:
df['Column_B'] = [list(filter(lambda y: not y.startswith('Y'), x)) for x in df['Column_B']]
print (df)
Column_A Column_B
0 1 [X1, X2]
1 2 [X3]
2 3 [X4, X5]
3 4 [X5]
Performance:
Depends of number of rows, number of values in lists and number of matched values:
#[40000 rows x 2 columns]
df = pd.concat([df] * 10000, ignore_index=True)
#print (df)
In [142]: %timeit df['Column_B'] = [[y for y in x if not y.startswith('Y')] for x in df['Column_B']]
23.7 ms ± 410 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
In [143]: %timeit df['Column_B'] = [list(filter(lambda y: not y.startswith('Y'), x)) for x in df['Column_B']]
36.5 ms ± 204 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
In [144]: %timeit df['Column_B'] = df['Column_B'].apply(lambda x: [y for y in x if not y.startswith('Y')])
30.4 ms ± 1.86 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
add a comment |
Use nested list comprehension with filtering with startswith
:
df['Column_B'] = [[y for y in x if not y.startswith('Y')] for x in df['Column_B']]
apply
alternative:
df['Column_B'] = df['Column_B'].apply(lambda x: [y for y in x if not y.startswith('Y')])
Or use filter
:
df['Column_B'] = [list(filter(lambda y: not y.startswith('Y'), x)) for x in df['Column_B']]
print (df)
Column_A Column_B
0 1 [X1, X2]
1 2 [X3]
2 3 [X4, X5]
3 4 [X5]
Performance:
Depends of number of rows, number of values in lists and number of matched values:
#[40000 rows x 2 columns]
df = pd.concat([df] * 10000, ignore_index=True)
#print (df)
In [142]: %timeit df['Column_B'] = [[y for y in x if not y.startswith('Y')] for x in df['Column_B']]
23.7 ms ± 410 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
In [143]: %timeit df['Column_B'] = [list(filter(lambda y: not y.startswith('Y'), x)) for x in df['Column_B']]
36.5 ms ± 204 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
In [144]: %timeit df['Column_B'] = df['Column_B'].apply(lambda x: [y for y in x if not y.startswith('Y')])
30.4 ms ± 1.86 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
Use nested list comprehension with filtering with startswith
:
df['Column_B'] = [[y for y in x if not y.startswith('Y')] for x in df['Column_B']]
apply
alternative:
df['Column_B'] = df['Column_B'].apply(lambda x: [y for y in x if not y.startswith('Y')])
Or use filter
:
df['Column_B'] = [list(filter(lambda y: not y.startswith('Y'), x)) for x in df['Column_B']]
print (df)
Column_A Column_B
0 1 [X1, X2]
1 2 [X3]
2 3 [X4, X5]
3 4 [X5]
Performance:
Depends of number of rows, number of values in lists and number of matched values:
#[40000 rows x 2 columns]
df = pd.concat([df] * 10000, ignore_index=True)
#print (df)
In [142]: %timeit df['Column_B'] = [[y for y in x if not y.startswith('Y')] for x in df['Column_B']]
23.7 ms ± 410 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
In [143]: %timeit df['Column_B'] = [list(filter(lambda y: not y.startswith('Y'), x)) for x in df['Column_B']]
36.5 ms ± 204 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
In [144]: %timeit df['Column_B'] = df['Column_B'].apply(lambda x: [y for y in x if not y.startswith('Y')])
30.4 ms ± 1.86 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
edited Nov 23 '18 at 11:15
answered Nov 23 '18 at 11:09
jezrael
320k22259338
320k22259338
add a comment |
add a comment |
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53445542%2fremove-strings-based-on-condition-pandas-dataframe-column%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown