Getting error: only one element tensors can be converted to Python scalars












1















Could you please help how to solve this problem. Basically, I'm trying to get into Pytorch tensor function data that is vector not scalar. X1 and X2 are basically columns in CSV file that contains many strings.
How to kind of iterate through every single data from x1 and x2 and not just trying to parse the whole vector. I'm a newbie at Python and Pytorch as well.



import torch
import random
import pandas

data = pandas.read_csv('train/train.tsv', sep='t')


learningrate = torch.tensor(0.01)
W = torch.rand([2, 2], dtype=torch.float, requires_grad=True)
b = torch.rand(2, dtype=torch.float, requires_grad=True)
U = torch.rand(2, dtype=torch.float, requires_grad=True)
c = torch.rand(1, dtype=torch.float, requires_grad=True)


def get_item():
x1 = torch.tensor(data['Powierzchnia w m2'],
dtype=torch.float, requires_grad=True)
x2 = torch.tensor(data['Liczba pokoi'],
dtype=torch.float, requires_grad=True)
x = torch.tensor([x1, x2], dtype=torch.float)
yexpected = torch.tensor(data['cena'].values, dtype=torch.float)
return x, yexpected


for _ in range(100000):

x, yexpected = get_item()
h = torch.sigmoid(W @ x+b)

print(x)
print(yexpected)
print(h)
y = torch.sigmoid(U@h+c)
loss = (y-yexpected)**2
print(loss)
loss.backward()
with torch.no_grad():
W -= learningrate * W.grad
b -= learningrate * b.grad
c -= learningrate * c.grad
U -= learningrate * U.grad
b.grad.zero_()
W.grad.zero_()
c.grad.zero_()
U.grad.zero_()









share|improve this question



























    1















    Could you please help how to solve this problem. Basically, I'm trying to get into Pytorch tensor function data that is vector not scalar. X1 and X2 are basically columns in CSV file that contains many strings.
    How to kind of iterate through every single data from x1 and x2 and not just trying to parse the whole vector. I'm a newbie at Python and Pytorch as well.



    import torch
    import random
    import pandas

    data = pandas.read_csv('train/train.tsv', sep='t')


    learningrate = torch.tensor(0.01)
    W = torch.rand([2, 2], dtype=torch.float, requires_grad=True)
    b = torch.rand(2, dtype=torch.float, requires_grad=True)
    U = torch.rand(2, dtype=torch.float, requires_grad=True)
    c = torch.rand(1, dtype=torch.float, requires_grad=True)


    def get_item():
    x1 = torch.tensor(data['Powierzchnia w m2'],
    dtype=torch.float, requires_grad=True)
    x2 = torch.tensor(data['Liczba pokoi'],
    dtype=torch.float, requires_grad=True)
    x = torch.tensor([x1, x2], dtype=torch.float)
    yexpected = torch.tensor(data['cena'].values, dtype=torch.float)
    return x, yexpected


    for _ in range(100000):

    x, yexpected = get_item()
    h = torch.sigmoid(W @ x+b)

    print(x)
    print(yexpected)
    print(h)
    y = torch.sigmoid(U@h+c)
    loss = (y-yexpected)**2
    print(loss)
    loss.backward()
    with torch.no_grad():
    W -= learningrate * W.grad
    b -= learningrate * b.grad
    c -= learningrate * c.grad
    U -= learningrate * U.grad
    b.grad.zero_()
    W.grad.zero_()
    c.grad.zero_()
    U.grad.zero_()









    share|improve this question

























      1












      1








      1








      Could you please help how to solve this problem. Basically, I'm trying to get into Pytorch tensor function data that is vector not scalar. X1 and X2 are basically columns in CSV file that contains many strings.
      How to kind of iterate through every single data from x1 and x2 and not just trying to parse the whole vector. I'm a newbie at Python and Pytorch as well.



      import torch
      import random
      import pandas

      data = pandas.read_csv('train/train.tsv', sep='t')


      learningrate = torch.tensor(0.01)
      W = torch.rand([2, 2], dtype=torch.float, requires_grad=True)
      b = torch.rand(2, dtype=torch.float, requires_grad=True)
      U = torch.rand(2, dtype=torch.float, requires_grad=True)
      c = torch.rand(1, dtype=torch.float, requires_grad=True)


      def get_item():
      x1 = torch.tensor(data['Powierzchnia w m2'],
      dtype=torch.float, requires_grad=True)
      x2 = torch.tensor(data['Liczba pokoi'],
      dtype=torch.float, requires_grad=True)
      x = torch.tensor([x1, x2], dtype=torch.float)
      yexpected = torch.tensor(data['cena'].values, dtype=torch.float)
      return x, yexpected


      for _ in range(100000):

      x, yexpected = get_item()
      h = torch.sigmoid(W @ x+b)

      print(x)
      print(yexpected)
      print(h)
      y = torch.sigmoid(U@h+c)
      loss = (y-yexpected)**2
      print(loss)
      loss.backward()
      with torch.no_grad():
      W -= learningrate * W.grad
      b -= learningrate * b.grad
      c -= learningrate * c.grad
      U -= learningrate * U.grad
      b.grad.zero_()
      W.grad.zero_()
      c.grad.zero_()
      U.grad.zero_()









      share|improve this question














      Could you please help how to solve this problem. Basically, I'm trying to get into Pytorch tensor function data that is vector not scalar. X1 and X2 are basically columns in CSV file that contains many strings.
      How to kind of iterate through every single data from x1 and x2 and not just trying to parse the whole vector. I'm a newbie at Python and Pytorch as well.



      import torch
      import random
      import pandas

      data = pandas.read_csv('train/train.tsv', sep='t')


      learningrate = torch.tensor(0.01)
      W = torch.rand([2, 2], dtype=torch.float, requires_grad=True)
      b = torch.rand(2, dtype=torch.float, requires_grad=True)
      U = torch.rand(2, dtype=torch.float, requires_grad=True)
      c = torch.rand(1, dtype=torch.float, requires_grad=True)


      def get_item():
      x1 = torch.tensor(data['Powierzchnia w m2'],
      dtype=torch.float, requires_grad=True)
      x2 = torch.tensor(data['Liczba pokoi'],
      dtype=torch.float, requires_grad=True)
      x = torch.tensor([x1, x2], dtype=torch.float)
      yexpected = torch.tensor(data['cena'].values, dtype=torch.float)
      return x, yexpected


      for _ in range(100000):

      x, yexpected = get_item()
      h = torch.sigmoid(W @ x+b)

      print(x)
      print(yexpected)
      print(h)
      y = torch.sigmoid(U@h+c)
      loss = (y-yexpected)**2
      print(loss)
      loss.backward()
      with torch.no_grad():
      W -= learningrate * W.grad
      b -= learningrate * b.grad
      c -= learningrate * c.grad
      U -= learningrate * U.grad
      b.grad.zero_()
      W.grad.zero_()
      c.grad.zero_()
      U.grad.zero_()






      python vector pytorch xor scalar






      share|improve this question













      share|improve this question











      share|improve this question




      share|improve this question










      asked Nov 27 '18 at 17:34









      Dawid KubickiDawid Kubicki

      62




      62
























          0






          active

          oldest

          votes











          Your Answer






          StackExchange.ifUsing("editor", function () {
          StackExchange.using("externalEditor", function () {
          StackExchange.using("snippets", function () {
          StackExchange.snippets.init();
          });
          });
          }, "code-snippets");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "1"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53505149%2fgetting-error-only-one-element-tensors-can-be-converted-to-python-scalars%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          0






          active

          oldest

          votes








          0






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Stack Overflow!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53505149%2fgetting-error-only-one-element-tensors-can-be-converted-to-python-scalars%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          A CLEAN and SIMPLE way to add appendices to Table of Contents and bookmarks

          Calculate evaluation metrics using cross_val_predict sklearn

          Insert data from modal to MySQL (multiple modal on website)