Getting error: only one element tensors can be converted to Python scalars
Could you please help how to solve this problem. Basically, I'm trying to get into Pytorch tensor function data that is vector not scalar. X1 and X2 are basically columns in CSV file that contains many strings.
How to kind of iterate through every single data from x1 and x2 and not just trying to parse the whole vector. I'm a newbie at Python and Pytorch as well.
import torch
import random
import pandas
data = pandas.read_csv('train/train.tsv', sep='t')
learningrate = torch.tensor(0.01)
W = torch.rand([2, 2], dtype=torch.float, requires_grad=True)
b = torch.rand(2, dtype=torch.float, requires_grad=True)
U = torch.rand(2, dtype=torch.float, requires_grad=True)
c = torch.rand(1, dtype=torch.float, requires_grad=True)
def get_item():
x1 = torch.tensor(data['Powierzchnia w m2'],
dtype=torch.float, requires_grad=True)
x2 = torch.tensor(data['Liczba pokoi'],
dtype=torch.float, requires_grad=True)
x = torch.tensor([x1, x2], dtype=torch.float)
yexpected = torch.tensor(data['cena'].values, dtype=torch.float)
return x, yexpected
for _ in range(100000):
x, yexpected = get_item()
h = torch.sigmoid(W @ x+b)
print(x)
print(yexpected)
print(h)
y = torch.sigmoid(U@h+c)
loss = (y-yexpected)**2
print(loss)
loss.backward()
with torch.no_grad():
W -= learningrate * W.grad
b -= learningrate * b.grad
c -= learningrate * c.grad
U -= learningrate * U.grad
b.grad.zero_()
W.grad.zero_()
c.grad.zero_()
U.grad.zero_()
python vector pytorch xor scalar
add a comment |
Could you please help how to solve this problem. Basically, I'm trying to get into Pytorch tensor function data that is vector not scalar. X1 and X2 are basically columns in CSV file that contains many strings.
How to kind of iterate through every single data from x1 and x2 and not just trying to parse the whole vector. I'm a newbie at Python and Pytorch as well.
import torch
import random
import pandas
data = pandas.read_csv('train/train.tsv', sep='t')
learningrate = torch.tensor(0.01)
W = torch.rand([2, 2], dtype=torch.float, requires_grad=True)
b = torch.rand(2, dtype=torch.float, requires_grad=True)
U = torch.rand(2, dtype=torch.float, requires_grad=True)
c = torch.rand(1, dtype=torch.float, requires_grad=True)
def get_item():
x1 = torch.tensor(data['Powierzchnia w m2'],
dtype=torch.float, requires_grad=True)
x2 = torch.tensor(data['Liczba pokoi'],
dtype=torch.float, requires_grad=True)
x = torch.tensor([x1, x2], dtype=torch.float)
yexpected = torch.tensor(data['cena'].values, dtype=torch.float)
return x, yexpected
for _ in range(100000):
x, yexpected = get_item()
h = torch.sigmoid(W @ x+b)
print(x)
print(yexpected)
print(h)
y = torch.sigmoid(U@h+c)
loss = (y-yexpected)**2
print(loss)
loss.backward()
with torch.no_grad():
W -= learningrate * W.grad
b -= learningrate * b.grad
c -= learningrate * c.grad
U -= learningrate * U.grad
b.grad.zero_()
W.grad.zero_()
c.grad.zero_()
U.grad.zero_()
python vector pytorch xor scalar
add a comment |
Could you please help how to solve this problem. Basically, I'm trying to get into Pytorch tensor function data that is vector not scalar. X1 and X2 are basically columns in CSV file that contains many strings.
How to kind of iterate through every single data from x1 and x2 and not just trying to parse the whole vector. I'm a newbie at Python and Pytorch as well.
import torch
import random
import pandas
data = pandas.read_csv('train/train.tsv', sep='t')
learningrate = torch.tensor(0.01)
W = torch.rand([2, 2], dtype=torch.float, requires_grad=True)
b = torch.rand(2, dtype=torch.float, requires_grad=True)
U = torch.rand(2, dtype=torch.float, requires_grad=True)
c = torch.rand(1, dtype=torch.float, requires_grad=True)
def get_item():
x1 = torch.tensor(data['Powierzchnia w m2'],
dtype=torch.float, requires_grad=True)
x2 = torch.tensor(data['Liczba pokoi'],
dtype=torch.float, requires_grad=True)
x = torch.tensor([x1, x2], dtype=torch.float)
yexpected = torch.tensor(data['cena'].values, dtype=torch.float)
return x, yexpected
for _ in range(100000):
x, yexpected = get_item()
h = torch.sigmoid(W @ x+b)
print(x)
print(yexpected)
print(h)
y = torch.sigmoid(U@h+c)
loss = (y-yexpected)**2
print(loss)
loss.backward()
with torch.no_grad():
W -= learningrate * W.grad
b -= learningrate * b.grad
c -= learningrate * c.grad
U -= learningrate * U.grad
b.grad.zero_()
W.grad.zero_()
c.grad.zero_()
U.grad.zero_()
python vector pytorch xor scalar
Could you please help how to solve this problem. Basically, I'm trying to get into Pytorch tensor function data that is vector not scalar. X1 and X2 are basically columns in CSV file that contains many strings.
How to kind of iterate through every single data from x1 and x2 and not just trying to parse the whole vector. I'm a newbie at Python and Pytorch as well.
import torch
import random
import pandas
data = pandas.read_csv('train/train.tsv', sep='t')
learningrate = torch.tensor(0.01)
W = torch.rand([2, 2], dtype=torch.float, requires_grad=True)
b = torch.rand(2, dtype=torch.float, requires_grad=True)
U = torch.rand(2, dtype=torch.float, requires_grad=True)
c = torch.rand(1, dtype=torch.float, requires_grad=True)
def get_item():
x1 = torch.tensor(data['Powierzchnia w m2'],
dtype=torch.float, requires_grad=True)
x2 = torch.tensor(data['Liczba pokoi'],
dtype=torch.float, requires_grad=True)
x = torch.tensor([x1, x2], dtype=torch.float)
yexpected = torch.tensor(data['cena'].values, dtype=torch.float)
return x, yexpected
for _ in range(100000):
x, yexpected = get_item()
h = torch.sigmoid(W @ x+b)
print(x)
print(yexpected)
print(h)
y = torch.sigmoid(U@h+c)
loss = (y-yexpected)**2
print(loss)
loss.backward()
with torch.no_grad():
W -= learningrate * W.grad
b -= learningrate * b.grad
c -= learningrate * c.grad
U -= learningrate * U.grad
b.grad.zero_()
W.grad.zero_()
c.grad.zero_()
U.grad.zero_()
python vector pytorch xor scalar
python vector pytorch xor scalar
asked Nov 27 '18 at 17:34
Dawid KubickiDawid Kubicki
62
62
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53505149%2fgetting-error-only-one-element-tensors-can-be-converted-to-python-scalars%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53505149%2fgetting-error-only-one-element-tensors-can-be-converted-to-python-scalars%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown