invalid index to scalar variable with batch each[2]












0















Code is shown as follow. It keep shows invalid index to scalar variable. still don't know the reason.
The problem is shown on line 90



 batch = each[2][i:i + batch_size]


which cause the problem. IndexError: invalid index to scalar variable.



Full code for the function is shown as below:



def predict_on_frames(frames_folder, model_file, input_layer, output_layer, batch_size):
input_height = 299
input_width = 299
input_mean = 0
input_std = 255
batch_size = batch_size
graph = load_graph(model_file)

labels_in_dir = os.listdir(frames_folder)
frames = [each for each in os.walk(frames_folder) if os.path.basename(each[0]) in labels_in_dir]

predictions =
for each in frames:
label = each[0]
print("Predicting on frame of %sn" % (label))
for i in tqdm(range(0, len(each[2]), batch_size), ascii=True):
batch = each[2][i:i + batch_size]
try:
batch = [os.path.join(label, frame) for frame in batch]
frames_tensors = read_tensor_from_image_file(batch, input_height=input_height, input_width=input_width, input_mean=input_mean, input_std=input_std)
pred = predict(graph, frames_tensors, input_layer, output_layer)
pred = [[each.tolist(), os.path.basename(label)] for each in pred]
predictions.extend(pred)

except KeyboardInterrupt:
print("You quit with ctrl+c")
sys.exit()

except Exception as e:
print("Error making prediction: %s" % (e))
x = input("nDo You Want to continue on other samples: y/n")
if x.lower() == 'y':
continue
else:
sys.exit()
return predictions









share|improve this question



























    0















    Code is shown as follow. It keep shows invalid index to scalar variable. still don't know the reason.
    The problem is shown on line 90



     batch = each[2][i:i + batch_size]


    which cause the problem. IndexError: invalid index to scalar variable.



    Full code for the function is shown as below:



    def predict_on_frames(frames_folder, model_file, input_layer, output_layer, batch_size):
    input_height = 299
    input_width = 299
    input_mean = 0
    input_std = 255
    batch_size = batch_size
    graph = load_graph(model_file)

    labels_in_dir = os.listdir(frames_folder)
    frames = [each for each in os.walk(frames_folder) if os.path.basename(each[0]) in labels_in_dir]

    predictions =
    for each in frames:
    label = each[0]
    print("Predicting on frame of %sn" % (label))
    for i in tqdm(range(0, len(each[2]), batch_size), ascii=True):
    batch = each[2][i:i + batch_size]
    try:
    batch = [os.path.join(label, frame) for frame in batch]
    frames_tensors = read_tensor_from_image_file(batch, input_height=input_height, input_width=input_width, input_mean=input_mean, input_std=input_std)
    pred = predict(graph, frames_tensors, input_layer, output_layer)
    pred = [[each.tolist(), os.path.basename(label)] for each in pred]
    predictions.extend(pred)

    except KeyboardInterrupt:
    print("You quit with ctrl+c")
    sys.exit()

    except Exception as e:
    print("Error making prediction: %s" % (e))
    x = input("nDo You Want to continue on other samples: y/n")
    if x.lower() == 'y':
    continue
    else:
    sys.exit()
    return predictions









    share|improve this question

























      0












      0








      0








      Code is shown as follow. It keep shows invalid index to scalar variable. still don't know the reason.
      The problem is shown on line 90



       batch = each[2][i:i + batch_size]


      which cause the problem. IndexError: invalid index to scalar variable.



      Full code for the function is shown as below:



      def predict_on_frames(frames_folder, model_file, input_layer, output_layer, batch_size):
      input_height = 299
      input_width = 299
      input_mean = 0
      input_std = 255
      batch_size = batch_size
      graph = load_graph(model_file)

      labels_in_dir = os.listdir(frames_folder)
      frames = [each for each in os.walk(frames_folder) if os.path.basename(each[0]) in labels_in_dir]

      predictions =
      for each in frames:
      label = each[0]
      print("Predicting on frame of %sn" % (label))
      for i in tqdm(range(0, len(each[2]), batch_size), ascii=True):
      batch = each[2][i:i + batch_size]
      try:
      batch = [os.path.join(label, frame) for frame in batch]
      frames_tensors = read_tensor_from_image_file(batch, input_height=input_height, input_width=input_width, input_mean=input_mean, input_std=input_std)
      pred = predict(graph, frames_tensors, input_layer, output_layer)
      pred = [[each.tolist(), os.path.basename(label)] for each in pred]
      predictions.extend(pred)

      except KeyboardInterrupt:
      print("You quit with ctrl+c")
      sys.exit()

      except Exception as e:
      print("Error making prediction: %s" % (e))
      x = input("nDo You Want to continue on other samples: y/n")
      if x.lower() == 'y':
      continue
      else:
      sys.exit()
      return predictions









      share|improve this question














      Code is shown as follow. It keep shows invalid index to scalar variable. still don't know the reason.
      The problem is shown on line 90



       batch = each[2][i:i + batch_size]


      which cause the problem. IndexError: invalid index to scalar variable.



      Full code for the function is shown as below:



      def predict_on_frames(frames_folder, model_file, input_layer, output_layer, batch_size):
      input_height = 299
      input_width = 299
      input_mean = 0
      input_std = 255
      batch_size = batch_size
      graph = load_graph(model_file)

      labels_in_dir = os.listdir(frames_folder)
      frames = [each for each in os.walk(frames_folder) if os.path.basename(each[0]) in labels_in_dir]

      predictions =
      for each in frames:
      label = each[0]
      print("Predicting on frame of %sn" % (label))
      for i in tqdm(range(0, len(each[2]), batch_size), ascii=True):
      batch = each[2][i:i + batch_size]
      try:
      batch = [os.path.join(label, frame) for frame in batch]
      frames_tensors = read_tensor_from_image_file(batch, input_height=input_height, input_width=input_width, input_mean=input_mean, input_std=input_std)
      pred = predict(graph, frames_tensors, input_layer, output_layer)
      pred = [[each.tolist(), os.path.basename(label)] for each in pred]
      predictions.extend(pred)

      except KeyboardInterrupt:
      print("You quit with ctrl+c")
      sys.exit()

      except Exception as e:
      print("Error making prediction: %s" % (e))
      x = input("nDo You Want to continue on other samples: y/n")
      if x.lower() == 'y':
      continue
      else:
      sys.exit()
      return predictions






      python tensorflow machine-learning






      share|improve this question













      share|improve this question











      share|improve this question




      share|improve this question










      asked Nov 25 '18 at 19:51









      Scorch LeeScorch Lee

      11




      11
























          0






          active

          oldest

          votes











          Your Answer






          StackExchange.ifUsing("editor", function () {
          StackExchange.using("externalEditor", function () {
          StackExchange.using("snippets", function () {
          StackExchange.snippets.init();
          });
          });
          }, "code-snippets");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "1"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53471269%2finvalid-index-to-scalar-variable-with-batch-each2%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          0






          active

          oldest

          votes








          0






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Stack Overflow!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53471269%2finvalid-index-to-scalar-variable-with-batch-each2%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          A CLEAN and SIMPLE way to add appendices to Table of Contents and bookmarks

          Calculate evaluation metrics using cross_val_predict sklearn

          Insert data from modal to MySQL (multiple modal on website)