Is there a command to find coordinates of projection of a point on a plane?












1















Let SABC be a tetrahedron, SA = c, AB = a, AC = b, SA perpendicular to AB, AB perpendicular to AC, and AC perpendicular to SA. I am trying to find the projection H of the point A on the plane SBC. I tried with two ways.



Firt way. With some calculations, I found that H(({b^2*c^2*a/((b^2+c^2)*a^2+b^2*c^2)},{b*c^2*a^2/((b^2+c^2)*a^2+b^2*c^2)},{b^2*c*a^2/((b^2+c^2)*a^2+b^2*c^2)})).



Second way, We can prove that, H is orthocentre of triangle SBC, then I see at
Is there a command to find coordinates of projection of a point on a line in 3D?



documentclass[border=3mm,12pt,tikz]{standalone}
usepackage{fouriernc}
usepackage{tikz,tikz-3dplot}
usepackage{tkz-euclide}
usetkzobj{all}

usetikzlibrary{intersections,calc,backgrounds}
newcommandpgfmathsinandcos[3]{%
pgfmathsetmacro#1{sin(#3)}%
pgfmathsetmacro#2{cos(#3)}%
}
tikzset{projection of point/.style args={(#1,#2,#3) on line through (#4,#5,#6)
and (#7,#8,#9)}{%
/utils/exec=pgfmathsetmacro{myprefactor}{((#1-#4)*(#7-#4)+(#2-#5)*(#8-#5)+(#3-#6)*(#9-#6))/((#7-#4)*(#7-#4)+(#8-#5)*(#8-#5)+(#9-#6)*(#9-#6))},
insert path={%
({#4+myprefactor*(#7-#4)},{#5+myprefactor*(#8-#5)},{#6+myprefactor*(#9-#6)})}
}}
begin{document}
tdplotsetmaincoords{70}{110}
%tdplotsetmaincoords{80}{100}
begin{tikzpicture}[tdplot_main_coords,scale=1.5]
pgfmathsetmacroa{4}
pgfmathsetmacrob{3}
pgfmathsetmacroc{4}

% definitions
path
coordinate(A) at (0,0,0)
coordinate (B) at (a,0,0)
coordinate (C) at (0,b,0)
coordinate (S) at (0,0,a)
coordinate (H) at ({b^2*c^2*a/((b^2+c^2)*a^2+b^2*c^2)},{b*c^2*a^2/((b^2+c^2)*a^2+b^2*c^2)},{b^2*c*a^2/((b^2+c^2)*a^2+b^2*c^2)});

begin{scope}
draw[dashed,thick]
(A) -- (B) (A) -- (C) (S)--(A) --(H) ;
draw[thick]
(S) -- (B) -- (C) -- cycle;
end{scope}
foreach point/position in {A/left,B/left,C/below,S/above,H/above}
{
fill (point) circle (1.5pt);
node[position=3pt] at (point) {$point$};
}
end{tikzpicture}

tdplotsetmaincoords{70}{110}
%tdplotsetmaincoords{80}{100}
begin{tikzpicture}[tdplot_main_coords,scale=1.5]
pgfmathsetmacroa{4}
pgfmathsetmacrob{3}
pgfmathsetmacroc{4}
% definitions
path
coordinate(A) at (0,0,0)
coordinate (B) at (a,0,0)
coordinate (C) at (0,b,0)
coordinate (S) at (0,0,a)
;
path[projection of point={(0,0,0) on line through (a,0,0) and (0,0,a)}]
coordinate (P)
[projection of point={(0,0,0) on line through (0,b,0) and (0,0,a)}]
coordinate (Q)
[projection of point={(0,0,0) on line through (0,b,0) and (a,0,0)}]
coordinate (R);



begin{scope}
draw [very thick] (S) -- (R);
draw [very thick, name path=B--Q] (B) -- (Q);
draw [very thick, name path=C--P] (C) -- (P);
path [name intersections={of=B--Q and C--P,by=H}];
end{scope}

begin{scope}
draw[dashed,thick]
(A) -- (B) (A) -- (C) (S)--(A) (A)--(H) (A)--(R) (A)--(P) (A)--(Q);
draw[thick]
(S) -- (B) -- (C) -- cycle;
end{scope}

tkzMarkRightAngle(S,R,C)
tkzMarkRightAngle(B,P,C)
tkzMarkRightAngle(B,Q,C)
tkzMarkRightAngle(A,R,B)


foreach point/position in {A/left,B/left,C/below,S/above,P/left,Q/above,R/below,H/above}
{
fill (point) circle (1.5pt);
node[position=3pt] at (point) {$point$};
}
end{tikzpicture}
end{document}


enter image description here



enter image description here



Is there a command to find coordinates of projection of a point on a plane?










share|improve this question





























    1















    Let SABC be a tetrahedron, SA = c, AB = a, AC = b, SA perpendicular to AB, AB perpendicular to AC, and AC perpendicular to SA. I am trying to find the projection H of the point A on the plane SBC. I tried with two ways.



    Firt way. With some calculations, I found that H(({b^2*c^2*a/((b^2+c^2)*a^2+b^2*c^2)},{b*c^2*a^2/((b^2+c^2)*a^2+b^2*c^2)},{b^2*c*a^2/((b^2+c^2)*a^2+b^2*c^2)})).



    Second way, We can prove that, H is orthocentre of triangle SBC, then I see at
    Is there a command to find coordinates of projection of a point on a line in 3D?



    documentclass[border=3mm,12pt,tikz]{standalone}
    usepackage{fouriernc}
    usepackage{tikz,tikz-3dplot}
    usepackage{tkz-euclide}
    usetkzobj{all}

    usetikzlibrary{intersections,calc,backgrounds}
    newcommandpgfmathsinandcos[3]{%
    pgfmathsetmacro#1{sin(#3)}%
    pgfmathsetmacro#2{cos(#3)}%
    }
    tikzset{projection of point/.style args={(#1,#2,#3) on line through (#4,#5,#6)
    and (#7,#8,#9)}{%
    /utils/exec=pgfmathsetmacro{myprefactor}{((#1-#4)*(#7-#4)+(#2-#5)*(#8-#5)+(#3-#6)*(#9-#6))/((#7-#4)*(#7-#4)+(#8-#5)*(#8-#5)+(#9-#6)*(#9-#6))},
    insert path={%
    ({#4+myprefactor*(#7-#4)},{#5+myprefactor*(#8-#5)},{#6+myprefactor*(#9-#6)})}
    }}
    begin{document}
    tdplotsetmaincoords{70}{110}
    %tdplotsetmaincoords{80}{100}
    begin{tikzpicture}[tdplot_main_coords,scale=1.5]
    pgfmathsetmacroa{4}
    pgfmathsetmacrob{3}
    pgfmathsetmacroc{4}

    % definitions
    path
    coordinate(A) at (0,0,0)
    coordinate (B) at (a,0,0)
    coordinate (C) at (0,b,0)
    coordinate (S) at (0,0,a)
    coordinate (H) at ({b^2*c^2*a/((b^2+c^2)*a^2+b^2*c^2)},{b*c^2*a^2/((b^2+c^2)*a^2+b^2*c^2)},{b^2*c*a^2/((b^2+c^2)*a^2+b^2*c^2)});

    begin{scope}
    draw[dashed,thick]
    (A) -- (B) (A) -- (C) (S)--(A) --(H) ;
    draw[thick]
    (S) -- (B) -- (C) -- cycle;
    end{scope}
    foreach point/position in {A/left,B/left,C/below,S/above,H/above}
    {
    fill (point) circle (1.5pt);
    node[position=3pt] at (point) {$point$};
    }
    end{tikzpicture}

    tdplotsetmaincoords{70}{110}
    %tdplotsetmaincoords{80}{100}
    begin{tikzpicture}[tdplot_main_coords,scale=1.5]
    pgfmathsetmacroa{4}
    pgfmathsetmacrob{3}
    pgfmathsetmacroc{4}
    % definitions
    path
    coordinate(A) at (0,0,0)
    coordinate (B) at (a,0,0)
    coordinate (C) at (0,b,0)
    coordinate (S) at (0,0,a)
    ;
    path[projection of point={(0,0,0) on line through (a,0,0) and (0,0,a)}]
    coordinate (P)
    [projection of point={(0,0,0) on line through (0,b,0) and (0,0,a)}]
    coordinate (Q)
    [projection of point={(0,0,0) on line through (0,b,0) and (a,0,0)}]
    coordinate (R);



    begin{scope}
    draw [very thick] (S) -- (R);
    draw [very thick, name path=B--Q] (B) -- (Q);
    draw [very thick, name path=C--P] (C) -- (P);
    path [name intersections={of=B--Q and C--P,by=H}];
    end{scope}

    begin{scope}
    draw[dashed,thick]
    (A) -- (B) (A) -- (C) (S)--(A) (A)--(H) (A)--(R) (A)--(P) (A)--(Q);
    draw[thick]
    (S) -- (B) -- (C) -- cycle;
    end{scope}

    tkzMarkRightAngle(S,R,C)
    tkzMarkRightAngle(B,P,C)
    tkzMarkRightAngle(B,Q,C)
    tkzMarkRightAngle(A,R,B)


    foreach point/position in {A/left,B/left,C/below,S/above,P/left,Q/above,R/below,H/above}
    {
    fill (point) circle (1.5pt);
    node[position=3pt] at (point) {$point$};
    }
    end{tikzpicture}
    end{document}


    enter image description here



    enter image description here



    Is there a command to find coordinates of projection of a point on a plane?










    share|improve this question



























      1












      1








      1








      Let SABC be a tetrahedron, SA = c, AB = a, AC = b, SA perpendicular to AB, AB perpendicular to AC, and AC perpendicular to SA. I am trying to find the projection H of the point A on the plane SBC. I tried with two ways.



      Firt way. With some calculations, I found that H(({b^2*c^2*a/((b^2+c^2)*a^2+b^2*c^2)},{b*c^2*a^2/((b^2+c^2)*a^2+b^2*c^2)},{b^2*c*a^2/((b^2+c^2)*a^2+b^2*c^2)})).



      Second way, We can prove that, H is orthocentre of triangle SBC, then I see at
      Is there a command to find coordinates of projection of a point on a line in 3D?



      documentclass[border=3mm,12pt,tikz]{standalone}
      usepackage{fouriernc}
      usepackage{tikz,tikz-3dplot}
      usepackage{tkz-euclide}
      usetkzobj{all}

      usetikzlibrary{intersections,calc,backgrounds}
      newcommandpgfmathsinandcos[3]{%
      pgfmathsetmacro#1{sin(#3)}%
      pgfmathsetmacro#2{cos(#3)}%
      }
      tikzset{projection of point/.style args={(#1,#2,#3) on line through (#4,#5,#6)
      and (#7,#8,#9)}{%
      /utils/exec=pgfmathsetmacro{myprefactor}{((#1-#4)*(#7-#4)+(#2-#5)*(#8-#5)+(#3-#6)*(#9-#6))/((#7-#4)*(#7-#4)+(#8-#5)*(#8-#5)+(#9-#6)*(#9-#6))},
      insert path={%
      ({#4+myprefactor*(#7-#4)},{#5+myprefactor*(#8-#5)},{#6+myprefactor*(#9-#6)})}
      }}
      begin{document}
      tdplotsetmaincoords{70}{110}
      %tdplotsetmaincoords{80}{100}
      begin{tikzpicture}[tdplot_main_coords,scale=1.5]
      pgfmathsetmacroa{4}
      pgfmathsetmacrob{3}
      pgfmathsetmacroc{4}

      % definitions
      path
      coordinate(A) at (0,0,0)
      coordinate (B) at (a,0,0)
      coordinate (C) at (0,b,0)
      coordinate (S) at (0,0,a)
      coordinate (H) at ({b^2*c^2*a/((b^2+c^2)*a^2+b^2*c^2)},{b*c^2*a^2/((b^2+c^2)*a^2+b^2*c^2)},{b^2*c*a^2/((b^2+c^2)*a^2+b^2*c^2)});

      begin{scope}
      draw[dashed,thick]
      (A) -- (B) (A) -- (C) (S)--(A) --(H) ;
      draw[thick]
      (S) -- (B) -- (C) -- cycle;
      end{scope}
      foreach point/position in {A/left,B/left,C/below,S/above,H/above}
      {
      fill (point) circle (1.5pt);
      node[position=3pt] at (point) {$point$};
      }
      end{tikzpicture}

      tdplotsetmaincoords{70}{110}
      %tdplotsetmaincoords{80}{100}
      begin{tikzpicture}[tdplot_main_coords,scale=1.5]
      pgfmathsetmacroa{4}
      pgfmathsetmacrob{3}
      pgfmathsetmacroc{4}
      % definitions
      path
      coordinate(A) at (0,0,0)
      coordinate (B) at (a,0,0)
      coordinate (C) at (0,b,0)
      coordinate (S) at (0,0,a)
      ;
      path[projection of point={(0,0,0) on line through (a,0,0) and (0,0,a)}]
      coordinate (P)
      [projection of point={(0,0,0) on line through (0,b,0) and (0,0,a)}]
      coordinate (Q)
      [projection of point={(0,0,0) on line through (0,b,0) and (a,0,0)}]
      coordinate (R);



      begin{scope}
      draw [very thick] (S) -- (R);
      draw [very thick, name path=B--Q] (B) -- (Q);
      draw [very thick, name path=C--P] (C) -- (P);
      path [name intersections={of=B--Q and C--P,by=H}];
      end{scope}

      begin{scope}
      draw[dashed,thick]
      (A) -- (B) (A) -- (C) (S)--(A) (A)--(H) (A)--(R) (A)--(P) (A)--(Q);
      draw[thick]
      (S) -- (B) -- (C) -- cycle;
      end{scope}

      tkzMarkRightAngle(S,R,C)
      tkzMarkRightAngle(B,P,C)
      tkzMarkRightAngle(B,Q,C)
      tkzMarkRightAngle(A,R,B)


      foreach point/position in {A/left,B/left,C/below,S/above,P/left,Q/above,R/below,H/above}
      {
      fill (point) circle (1.5pt);
      node[position=3pt] at (point) {$point$};
      }
      end{tikzpicture}
      end{document}


      enter image description here



      enter image description here



      Is there a command to find coordinates of projection of a point on a plane?










      share|improve this question
















      Let SABC be a tetrahedron, SA = c, AB = a, AC = b, SA perpendicular to AB, AB perpendicular to AC, and AC perpendicular to SA. I am trying to find the projection H of the point A on the plane SBC. I tried with two ways.



      Firt way. With some calculations, I found that H(({b^2*c^2*a/((b^2+c^2)*a^2+b^2*c^2)},{b*c^2*a^2/((b^2+c^2)*a^2+b^2*c^2)},{b^2*c*a^2/((b^2+c^2)*a^2+b^2*c^2)})).



      Second way, We can prove that, H is orthocentre of triangle SBC, then I see at
      Is there a command to find coordinates of projection of a point on a line in 3D?



      documentclass[border=3mm,12pt,tikz]{standalone}
      usepackage{fouriernc}
      usepackage{tikz,tikz-3dplot}
      usepackage{tkz-euclide}
      usetkzobj{all}

      usetikzlibrary{intersections,calc,backgrounds}
      newcommandpgfmathsinandcos[3]{%
      pgfmathsetmacro#1{sin(#3)}%
      pgfmathsetmacro#2{cos(#3)}%
      }
      tikzset{projection of point/.style args={(#1,#2,#3) on line through (#4,#5,#6)
      and (#7,#8,#9)}{%
      /utils/exec=pgfmathsetmacro{myprefactor}{((#1-#4)*(#7-#4)+(#2-#5)*(#8-#5)+(#3-#6)*(#9-#6))/((#7-#4)*(#7-#4)+(#8-#5)*(#8-#5)+(#9-#6)*(#9-#6))},
      insert path={%
      ({#4+myprefactor*(#7-#4)},{#5+myprefactor*(#8-#5)},{#6+myprefactor*(#9-#6)})}
      }}
      begin{document}
      tdplotsetmaincoords{70}{110}
      %tdplotsetmaincoords{80}{100}
      begin{tikzpicture}[tdplot_main_coords,scale=1.5]
      pgfmathsetmacroa{4}
      pgfmathsetmacrob{3}
      pgfmathsetmacroc{4}

      % definitions
      path
      coordinate(A) at (0,0,0)
      coordinate (B) at (a,0,0)
      coordinate (C) at (0,b,0)
      coordinate (S) at (0,0,a)
      coordinate (H) at ({b^2*c^2*a/((b^2+c^2)*a^2+b^2*c^2)},{b*c^2*a^2/((b^2+c^2)*a^2+b^2*c^2)},{b^2*c*a^2/((b^2+c^2)*a^2+b^2*c^2)});

      begin{scope}
      draw[dashed,thick]
      (A) -- (B) (A) -- (C) (S)--(A) --(H) ;
      draw[thick]
      (S) -- (B) -- (C) -- cycle;
      end{scope}
      foreach point/position in {A/left,B/left,C/below,S/above,H/above}
      {
      fill (point) circle (1.5pt);
      node[position=3pt] at (point) {$point$};
      }
      end{tikzpicture}

      tdplotsetmaincoords{70}{110}
      %tdplotsetmaincoords{80}{100}
      begin{tikzpicture}[tdplot_main_coords,scale=1.5]
      pgfmathsetmacroa{4}
      pgfmathsetmacrob{3}
      pgfmathsetmacroc{4}
      % definitions
      path
      coordinate(A) at (0,0,0)
      coordinate (B) at (a,0,0)
      coordinate (C) at (0,b,0)
      coordinate (S) at (0,0,a)
      ;
      path[projection of point={(0,0,0) on line through (a,0,0) and (0,0,a)}]
      coordinate (P)
      [projection of point={(0,0,0) on line through (0,b,0) and (0,0,a)}]
      coordinate (Q)
      [projection of point={(0,0,0) on line through (0,b,0) and (a,0,0)}]
      coordinate (R);



      begin{scope}
      draw [very thick] (S) -- (R);
      draw [very thick, name path=B--Q] (B) -- (Q);
      draw [very thick, name path=C--P] (C) -- (P);
      path [name intersections={of=B--Q and C--P,by=H}];
      end{scope}

      begin{scope}
      draw[dashed,thick]
      (A) -- (B) (A) -- (C) (S)--(A) (A)--(H) (A)--(R) (A)--(P) (A)--(Q);
      draw[thick]
      (S) -- (B) -- (C) -- cycle;
      end{scope}

      tkzMarkRightAngle(S,R,C)
      tkzMarkRightAngle(B,P,C)
      tkzMarkRightAngle(B,Q,C)
      tkzMarkRightAngle(A,R,B)


      foreach point/position in {A/left,B/left,C/below,S/above,P/left,Q/above,R/below,H/above}
      {
      fill (point) circle (1.5pt);
      node[position=3pt] at (point) {$point$};
      }
      end{tikzpicture}
      end{document}


      enter image description here



      enter image description here



      Is there a command to find coordinates of projection of a point on a plane?







      tikz-pgf 3d tikz-3dplot






      share|improve this question















      share|improve this question













      share|improve this question




      share|improve this question








      edited 34 mins ago







      minhthien_2016

















      asked 40 mins ago









      minhthien_2016minhthien_2016

      1,163816




      1,163816






















          0






          active

          oldest

          votes











          Your Answer








          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "85"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: false,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: null,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2ftex.stackexchange.com%2fquestions%2f471091%2fis-there-a-command-to-find-coordinates-of-projection-of-a-point-on-a-plane%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          0






          active

          oldest

          votes








          0






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















          draft saved

          draft discarded




















































          Thanks for contributing an answer to TeX - LaTeX Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2ftex.stackexchange.com%2fquestions%2f471091%2fis-there-a-command-to-find-coordinates-of-projection-of-a-point-on-a-plane%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          A CLEAN and SIMPLE way to add appendices to Table of Contents and bookmarks

          Calculate evaluation metrics using cross_val_predict sklearn

          Insert data from modal to MySQL (multiple modal on website)