How to get phrase count in Spacy phrasematcher












1















I am trying spaCy's PhraseMatcher. I have used an adaptation of the example given in the website like below.



color_patterns = [nlp(text) for text in ('red', 'green', 'yellow')]
product_patterns = [nlp(text) for text in ('boots', 'coats', 'bag')]
material_patterns = [nlp(text) for text in ('bat', 'yellow ball')]

matcher = PhraseMatcher(nlp.vocab)
matcher.add('COLOR', None, *color_patterns)
matcher.add('PRODUCT', None, *product_patterns)
matcher.add('MATERIAL', None, *material_patterns)

doc = nlp("yellow ball yellow lines")
matches = matcher(doc)
for match_id, start, end in matches:
rule_id = nlp.vocab.strings[match_id] # get the unicode ID, i.e. 'COLOR'
span = doc[start : end] # get the matched slice of the doc
print(rule_id, span.text)


The output is



COLOR yellow
MATERIAL ball


My question is how do I get the count of phrases such that my output looks like indicating yellow occurred twice and ball only once.



COLOR Yellow (2)
MATERIAL ball (1)









share|improve this question



























    1















    I am trying spaCy's PhraseMatcher. I have used an adaptation of the example given in the website like below.



    color_patterns = [nlp(text) for text in ('red', 'green', 'yellow')]
    product_patterns = [nlp(text) for text in ('boots', 'coats', 'bag')]
    material_patterns = [nlp(text) for text in ('bat', 'yellow ball')]

    matcher = PhraseMatcher(nlp.vocab)
    matcher.add('COLOR', None, *color_patterns)
    matcher.add('PRODUCT', None, *product_patterns)
    matcher.add('MATERIAL', None, *material_patterns)

    doc = nlp("yellow ball yellow lines")
    matches = matcher(doc)
    for match_id, start, end in matches:
    rule_id = nlp.vocab.strings[match_id] # get the unicode ID, i.e. 'COLOR'
    span = doc[start : end] # get the matched slice of the doc
    print(rule_id, span.text)


    The output is



    COLOR yellow
    MATERIAL ball


    My question is how do I get the count of phrases such that my output looks like indicating yellow occurred twice and ball only once.



    COLOR Yellow (2)
    MATERIAL ball (1)









    share|improve this question

























      1












      1








      1








      I am trying spaCy's PhraseMatcher. I have used an adaptation of the example given in the website like below.



      color_patterns = [nlp(text) for text in ('red', 'green', 'yellow')]
      product_patterns = [nlp(text) for text in ('boots', 'coats', 'bag')]
      material_patterns = [nlp(text) for text in ('bat', 'yellow ball')]

      matcher = PhraseMatcher(nlp.vocab)
      matcher.add('COLOR', None, *color_patterns)
      matcher.add('PRODUCT', None, *product_patterns)
      matcher.add('MATERIAL', None, *material_patterns)

      doc = nlp("yellow ball yellow lines")
      matches = matcher(doc)
      for match_id, start, end in matches:
      rule_id = nlp.vocab.strings[match_id] # get the unicode ID, i.e. 'COLOR'
      span = doc[start : end] # get the matched slice of the doc
      print(rule_id, span.text)


      The output is



      COLOR yellow
      MATERIAL ball


      My question is how do I get the count of phrases such that my output looks like indicating yellow occurred twice and ball only once.



      COLOR Yellow (2)
      MATERIAL ball (1)









      share|improve this question














      I am trying spaCy's PhraseMatcher. I have used an adaptation of the example given in the website like below.



      color_patterns = [nlp(text) for text in ('red', 'green', 'yellow')]
      product_patterns = [nlp(text) for text in ('boots', 'coats', 'bag')]
      material_patterns = [nlp(text) for text in ('bat', 'yellow ball')]

      matcher = PhraseMatcher(nlp.vocab)
      matcher.add('COLOR', None, *color_patterns)
      matcher.add('PRODUCT', None, *product_patterns)
      matcher.add('MATERIAL', None, *material_patterns)

      doc = nlp("yellow ball yellow lines")
      matches = matcher(doc)
      for match_id, start, end in matches:
      rule_id = nlp.vocab.strings[match_id] # get the unicode ID, i.e. 'COLOR'
      span = doc[start : end] # get the matched slice of the doc
      print(rule_id, span.text)


      The output is



      COLOR yellow
      MATERIAL ball


      My question is how do I get the count of phrases such that my output looks like indicating yellow occurred twice and ball only once.



      COLOR Yellow (2)
      MATERIAL ball (1)






      python-3.x nlp spacy






      share|improve this question













      share|improve this question











      share|improve this question




      share|improve this question










      asked Nov 24 '18 at 19:43









      venkatttaknevvenkatttaknev

      498




      498
























          1 Answer
          1






          active

          oldest

          votes


















          1














          Something like this?



          from collections import Counter
          from spacy.matcher import PhraseMatcher
          color_patterns = [nlp(text) for text in ('red', 'green', 'yellow')]
          product_patterns = [nlp(text) for text in ('boots', 'coats', 'bag')]
          material_patterns = [nlp(text) for text in ('bat', 'yellow ball')]

          matcher = PhraseMatcher(nlp.vocab)
          matcher.add('COLOR', None, *color_patterns)
          matcher.add('PRODUCT', None, *product_patterns)
          matcher.add('MATERIAL', None, *material_patterns)
          d =
          doc = nlp("yellow ball yellow lines")
          matches = matcher(doc)
          for match_id, start, end in matches:
          rule_id = nlp.vocab.strings[match_id] # get the unicode ID, i.e. 'COLOR'
          span = doc[start : end] # get the matched slice of the doc
          d.append((rule_id, span.text))
          print("n".join(f'{i[0]} {i[1]} ({j})' for i,j in Counter(d).items()))


          Output:



          COLOR yellow (2)
          MATERIAL yellow ball (1)





          share|improve this answer























            Your Answer






            StackExchange.ifUsing("editor", function () {
            StackExchange.using("externalEditor", function () {
            StackExchange.using("snippets", function () {
            StackExchange.snippets.init();
            });
            });
            }, "code-snippets");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "1"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53461757%2fhow-to-get-phrase-count-in-spacy-phrasematcher%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            1














            Something like this?



            from collections import Counter
            from spacy.matcher import PhraseMatcher
            color_patterns = [nlp(text) for text in ('red', 'green', 'yellow')]
            product_patterns = [nlp(text) for text in ('boots', 'coats', 'bag')]
            material_patterns = [nlp(text) for text in ('bat', 'yellow ball')]

            matcher = PhraseMatcher(nlp.vocab)
            matcher.add('COLOR', None, *color_patterns)
            matcher.add('PRODUCT', None, *product_patterns)
            matcher.add('MATERIAL', None, *material_patterns)
            d =
            doc = nlp("yellow ball yellow lines")
            matches = matcher(doc)
            for match_id, start, end in matches:
            rule_id = nlp.vocab.strings[match_id] # get the unicode ID, i.e. 'COLOR'
            span = doc[start : end] # get the matched slice of the doc
            d.append((rule_id, span.text))
            print("n".join(f'{i[0]} {i[1]} ({j})' for i,j in Counter(d).items()))


            Output:



            COLOR yellow (2)
            MATERIAL yellow ball (1)





            share|improve this answer




























              1














              Something like this?



              from collections import Counter
              from spacy.matcher import PhraseMatcher
              color_patterns = [nlp(text) for text in ('red', 'green', 'yellow')]
              product_patterns = [nlp(text) for text in ('boots', 'coats', 'bag')]
              material_patterns = [nlp(text) for text in ('bat', 'yellow ball')]

              matcher = PhraseMatcher(nlp.vocab)
              matcher.add('COLOR', None, *color_patterns)
              matcher.add('PRODUCT', None, *product_patterns)
              matcher.add('MATERIAL', None, *material_patterns)
              d =
              doc = nlp("yellow ball yellow lines")
              matches = matcher(doc)
              for match_id, start, end in matches:
              rule_id = nlp.vocab.strings[match_id] # get the unicode ID, i.e. 'COLOR'
              span = doc[start : end] # get the matched slice of the doc
              d.append((rule_id, span.text))
              print("n".join(f'{i[0]} {i[1]} ({j})' for i,j in Counter(d).items()))


              Output:



              COLOR yellow (2)
              MATERIAL yellow ball (1)





              share|improve this answer


























                1












                1








                1







                Something like this?



                from collections import Counter
                from spacy.matcher import PhraseMatcher
                color_patterns = [nlp(text) for text in ('red', 'green', 'yellow')]
                product_patterns = [nlp(text) for text in ('boots', 'coats', 'bag')]
                material_patterns = [nlp(text) for text in ('bat', 'yellow ball')]

                matcher = PhraseMatcher(nlp.vocab)
                matcher.add('COLOR', None, *color_patterns)
                matcher.add('PRODUCT', None, *product_patterns)
                matcher.add('MATERIAL', None, *material_patterns)
                d =
                doc = nlp("yellow ball yellow lines")
                matches = matcher(doc)
                for match_id, start, end in matches:
                rule_id = nlp.vocab.strings[match_id] # get the unicode ID, i.e. 'COLOR'
                span = doc[start : end] # get the matched slice of the doc
                d.append((rule_id, span.text))
                print("n".join(f'{i[0]} {i[1]} ({j})' for i,j in Counter(d).items()))


                Output:



                COLOR yellow (2)
                MATERIAL yellow ball (1)





                share|improve this answer













                Something like this?



                from collections import Counter
                from spacy.matcher import PhraseMatcher
                color_patterns = [nlp(text) for text in ('red', 'green', 'yellow')]
                product_patterns = [nlp(text) for text in ('boots', 'coats', 'bag')]
                material_patterns = [nlp(text) for text in ('bat', 'yellow ball')]

                matcher = PhraseMatcher(nlp.vocab)
                matcher.add('COLOR', None, *color_patterns)
                matcher.add('PRODUCT', None, *product_patterns)
                matcher.add('MATERIAL', None, *material_patterns)
                d =
                doc = nlp("yellow ball yellow lines")
                matches = matcher(doc)
                for match_id, start, end in matches:
                rule_id = nlp.vocab.strings[match_id] # get the unicode ID, i.e. 'COLOR'
                span = doc[start : end] # get the matched slice of the doc
                d.append((rule_id, span.text))
                print("n".join(f'{i[0]} {i[1]} ({j})' for i,j in Counter(d).items()))


                Output:



                COLOR yellow (2)
                MATERIAL yellow ball (1)






                share|improve this answer












                share|improve this answer



                share|improve this answer










                answered Nov 25 '18 at 7:12









                Srce CdeSrce Cde

                1,144511




                1,144511






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Stack Overflow!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53461757%2fhow-to-get-phrase-count-in-spacy-phrasematcher%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    A CLEAN and SIMPLE way to add appendices to Table of Contents and bookmarks

                    Calculate evaluation metrics using cross_val_predict sklearn

                    Insert data from modal to MySQL (multiple modal on website)