Matriz transposta conjugada

Multi tool use
Em matemática, sobretudo na álgebra linear, uma matriz transposta conjugada de uma matriz n×m{displaystyle ntimes m,}
é uma outra matriz m×n{displaystyle mtimes n,}
formada pelo complexo conjugado de cada elemento da matriz transposta AT{displaystyle A^{T},}
. Costuma-se denotar por A∗{displaystyle A^{*},}
a matriz transposta conjugada de A{displaystyle A,}
: (A∗)i,j=Aj,i¯{displaystyle (A^{*})_{i,j}={overline {A_{j,i}}}}
, quando a matriz A{displaystyle A,}
está escrita em uma base ortonormal.[1]
A matriz A∗{displaystyle A^{*},}
representa o operador adjunto do operador linear associado à matriz A{displaystyle A,}
. A propriedade fundamental do operador adjunto é dada pela igualdade:
- ⟨Ax,y⟩=⟨x,A∗y⟩,∀x,y{displaystyle langle Ax,yrangle =langle x,A^{*}yrangle ,forall x,y,}

Uma matriz é dita matriz hermitiana ou auto-adjunta se for idêntica à sua transposta conjugada.
Referências
↑ Horn, Roger A.; Johnson, Charles R. (1985). Matrix Analysis. [S.l.]: Cambridge University Press. ISBN 0-521-38632-2
PPP2TkHCJyp,xPF0EudloD6H9CT1sREK58jMriAJa f,I9U1qxmyF9ZyHjc,1Fq HHtKJhMYpgsMiWyILe
Popular posts from this blog
0
I found a lot of questions abount appendices and ToC. Many users want appendices to be grouped in an Appendix part, however some problems arise with ToC, hyperref, PDF viewer bookmarks, and so on. There are different solutions which require extra packages, command patching and other extra code, however none of them satisfies me. I almost found an easy way to accomplish a good result, where appendices are added to bookmarks in the right way and hyperref links point to the right page. However, the number of the "Appendix" part page is wrong (it's the number of appendix A). Is there any EASY way to fix that? This is a MWE: documentclass{book} usepackage[nottoc,notlot,notlof]{tocbibind} usepackage{hyperref} begin{document} frontmatter tableofcontents mainmatter part{First} chapter{...
1
In the sklearn.model_selection.cross_val_predict page it is stated: Generate cross-validated estimates for each input data point. It is not appropriate to pass these predictions into an evaluation metric. Can someone explain what does it mean? If this gives estimate of Y (y prediction) for every Y (true Y), why can't I calculate metrics such as RMSE or coefficient of determination using these results?
python scikit-learn cross-validation
share | improve this question
edited Nov 28 '18 at 17:52
desertnaut
20.3k 7 43 79
...
0
I have problem with inserting data to MySQL from modal. My modal: <a href="#" class="badge badge-pill badge-success">6 komentarzy</a> <a href="#" class="badge badge-pill badge-danger">brak komentarzy</a> <a data-toggle="modal" href="#add_desk_comm_{$desk_['desk_id']}" data-target="#add_desk_comm_{$desk_['desk_id']}" class="ediiit">(dodaj)</a> <div class="modal fade" id="add_desk_comm_{$desk_['desk_id']}" tabindex="-1" role="dialog" aria-labelledby="edit_printer" aria-hidden="true"> <div class="modal-dialog" role="document"> ...