Dinastia robertina

Multi tool use
Dinastia Robertina
|
Robertianos, Robertinos
|
Origem
|
Fundador
|
Roberto, Prefeito do Palácio
|
Fundação
|
Século VII
|
Casa originária
|
Merovíngios
|
Etnia
|
Franca
|
Atual soberano
|
Último soberano
|
Hugo, o Grande
|
Dissolução
|
956
|
Linhagem secundária
|
Dinastia Rorgonida, Dinastia Capetiana
|
Dinastia robertina ou robertinos eram a família antecessora franca que deu origem às casas dominantes da França; ela emergiu à proeminência no antigo Reino Franco de Austrásia no século VIII, aproximadamente na mesma região da Bélgica atual, e emigrou mais tarde para a Frância Oriental, entre os rios Sena e Líger. Os membros eram "antepassados" da dinastia capetiana.[1]
Ver também |
Referências
↑ Bourchard, Constance Brittain (1999). «Burgundy and Provence:879-1032». In: Reuter, Timothy; McKitterick, Rosamond; Abulafia, David. The New Cambridge Medieval History: Vol. III, c.900 - c.1024 (Link is extract=Volume III, Chapter 1 "Introduction: Reading the Tenth Century") (PDF). III 1. publ. ed. Cambridge: Cambridge University Press. p. 336. ISBN 0521364477. Consultado em 28 de fevereiro de 2013
 |
Este artigo sobre a França é um esboço. Você pode ajudar a Wikipédia expandindo-o.
|
Portal da França
Portal da história
LoeEfH6L8cjzeQ Ej,dhFVaCsq500By4SN,JHrd,1OrfJVCwlS QZe2ykus5C47Zk1vDJJCh pcXchN5k,131m gCd4bKJ8IHW
Popular posts from this blog
0
I found a lot of questions abount appendices and ToC. Many users want appendices to be grouped in an Appendix part, however some problems arise with ToC, hyperref, PDF viewer bookmarks, and so on. There are different solutions which require extra packages, command patching and other extra code, however none of them satisfies me. I almost found an easy way to accomplish a good result, where appendices are added to bookmarks in the right way and hyperref links point to the right page. However, the number of the "Appendix" part page is wrong (it's the number of appendix A). Is there any EASY way to fix that? This is a MWE: documentclass{book} usepackage[nottoc,notlot,notlof]{tocbibind} usepackage{hyperref} begin{document} frontmatter tableofcontents mainmatter part{First} chapter{...
1
In the sklearn.model_selection.cross_val_predict page it is stated: Generate cross-validated estimates for each input data point. It is not appropriate to pass these predictions into an evaluation metric. Can someone explain what does it mean? If this gives estimate of Y (y prediction) for every Y (true Y), why can't I calculate metrics such as RMSE or coefficient of determination using these results?
python scikit-learn cross-validation
share | improve this question
edited Nov 28 '18 at 17:52
desertnaut
20.3k 7 43 79
...
.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty{ height:90px;width:728px;box-sizing:border-box;
}
0
I have written a function using curl to generate the token. I check whether the token exists; if not, then I execute the function, otherwise I skip this function and proceed to next. But I am not sure that it will work if a token is expired. Is there any command to identify the expired token and generates the new one by calling this function? #!/bin/ksh export V_TOKEN="gen_token_${V_DATE}.txt" #### Calling function to generate the token function callPOST { curl -X POST -H 'Content-Type: application/x-www-form-url' -d 'grant_type=password&username=usr01&password=pwd...