Melanossomo

Multi tool use
Os melanossomos (português brasileiro) ou melanossomas (português europeu) são corpúsculos intra-celulares que armazenam a melanina da pele de alguns seres vivos. Substâncias despigmentantes, como a hidroquinona, por exemplo, bloqueiam a produção de melanina e aumentam a degradação dos melanossomos.
Estruturas da célula/Organelas (TH H1.00.01.2-3) |
Sistema endomembranoso |
- Membrana celular
Núcleo
- Retículo endoplasmático
- Retículo nucleoplasmático
- Complexo de Golgi
- Parentessomo
- Autofagossomo
Vesículas
- Lisossomo
- Endossomo
- Fagossoma
- Vacúolo
Grânulos citoplasmáticos
- Melanossomo
- Microcorpo
- Glioxissomos
- Peroxissoma
- Corpo de Weibel-Palade
|
 |
Citoesqueleto |
- Microfilamentos
- Filamentos intermédios
- Microtúbulos
- Citoesqueleto procariótico
MTOCs
- Centrossoma
- Centríolo
- Corpo basal
- Corpo polar do fuso
- Miofibrilha
|
Endossimbiontes |
- Mitocôndria
Plastídeos
- Cloroplasto
- Cromoplasto
- Gerontoplasto
- Amiloplasto
|
Outros |
RNA
- Citoplasma
- Proteassoma
|
Externos |
Ondulipódio
- Cílios
- Flagelos
- Axonema
- Raio radial
- Parede celular
- Acrossoma
|
- Portal Biologia
- Portal Biologia celular
- Biologia Celular
|
Lpv,M,uFYMpae3p exeqS1EEmuqEvdO VcWD,4tIsn0 K1UNUxl6Hy
Popular posts from this blog
0
I found a lot of questions abount appendices and ToC. Many users want appendices to be grouped in an Appendix part, however some problems arise with ToC, hyperref, PDF viewer bookmarks, and so on. There are different solutions which require extra packages, command patching and other extra code, however none of them satisfies me. I almost found an easy way to accomplish a good result, where appendices are added to bookmarks in the right way and hyperref links point to the right page. However, the number of the "Appendix" part page is wrong (it's the number of appendix A). Is there any EASY way to fix that? This is a MWE: documentclass{book} usepackage[nottoc,notlot,notlof]{tocbibind} usepackage{hyperref} begin{document} frontmatter tableofcontents mainmatter part{First} chapter{...
1
In the sklearn.model_selection.cross_val_predict page it is stated: Generate cross-validated estimates for each input data point. It is not appropriate to pass these predictions into an evaluation metric. Can someone explain what does it mean? If this gives estimate of Y (y prediction) for every Y (true Y), why can't I calculate metrics such as RMSE or coefficient of determination using these results?
python scikit-learn cross-validation
share | improve this question
edited Nov 28 '18 at 17:52
desertnaut
20.3k 7 43 79
...
0
I have problem with inserting data to MySQL from modal. My modal: <a href="#" class="badge badge-pill badge-success">6 komentarzy</a> <a href="#" class="badge badge-pill badge-danger">brak komentarzy</a> <a data-toggle="modal" href="#add_desk_comm_{$desk_['desk_id']}" data-target="#add_desk_comm_{$desk_['desk_id']}" class="ediiit">(dodaj)</a> <div class="modal fade" id="add_desk_comm_{$desk_['desk_id']}" tabindex="-1" role="dialog" aria-labelledby="edit_printer" aria-hidden="true"> <div class="modal-dialog" role="document"> ...