Ilhas Schouten

Multi tool use

Localização das ilhas Schouten

Ilhas Schouten na Baía Cenderawasih.
Nota: Se procura o arquipélago homónimo na Papua-Nova Guiné, consulte Ilhas Schouten (Papua-Nova Guiné)
As ilhas Schouten (Kepulauan Biak, Ilhas Biak ou Ilhas Geelvink) são um arquipélago do leste da Indonésia na Baía Cenderawasih (ou de Geelvink) a norte da costa da Nova Guiné (1° 00′ S, 136° 00′ L). As maiores ilhas são Biak, Supiori, Noemfoor e Num, havendo muitas outras menores. Fazem parte da província indonésia da Papua.
Recebem o seu nome em homenagem ao explorador neerlandês Willem Schouten.
As ilhas têm elevado grau de endemismo da avifauna na região da Nova Guiné, com 11 das 16 espécies de aves a se encontrarem apenas no arquipélago..[1][2]Diolenius angustipes é uma espécie de aranha endémica das Schouten.[3]
Não devem ser confundidas com o arquipélago homónimo na Papua-Nova Guiné, as Ilhas Schouten (Papua-Nova Guiné).
Referências |
↑ [1]
↑ [2]
↑ .mw-parser-output .smallcaps{font-variant:small-caps}
Platnick, Norman I. (2009): The world spider catalog, version 9.5. American Museum of Natural History.
ZMVtYHC4f,q,oJ0wojdToiEd8CE atnRyl8hq2F,KrVPXI3G,lP BrGE41lthVRgRsC4pLD6 kZBc3jDFAiWbf 8i
Popular posts from this blog
0
I found a lot of questions abount appendices and ToC. Many users want appendices to be grouped in an Appendix part, however some problems arise with ToC, hyperref, PDF viewer bookmarks, and so on. There are different solutions which require extra packages, command patching and other extra code, however none of them satisfies me. I almost found an easy way to accomplish a good result, where appendices are added to bookmarks in the right way and hyperref links point to the right page. However, the number of the "Appendix" part page is wrong (it's the number of appendix A). Is there any EASY way to fix that? This is a MWE: documentclass{book} usepackage[nottoc,notlot,notlof]{tocbibind} usepackage{hyperref} begin{document} frontmatter tableofcontents mainmatter part{First} chapter{...
1
In the sklearn.model_selection.cross_val_predict page it is stated: Generate cross-validated estimates for each input data point. It is not appropriate to pass these predictions into an evaluation metric. Can someone explain what does it mean? If this gives estimate of Y (y prediction) for every Y (true Y), why can't I calculate metrics such as RMSE or coefficient of determination using these results?
python scikit-learn cross-validation
share | improve this question
edited Nov 28 '18 at 17:52
desertnaut
20.3k 7 43 79
...
.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty{ height:90px;width:728px;box-sizing:border-box;
}
0
I have written a function using curl to generate the token. I check whether the token exists; if not, then I execute the function, otherwise I skip this function and proceed to next. But I am not sure that it will work if a token is expired. Is there any command to identify the expired token and generates the new one by calling this function? #!/bin/ksh export V_TOKEN="gen_token_${V_DATE}.txt" #### Calling function to generate the token function callPOST { curl -X POST -H 'Content-Type: application/x-www-form-url' -d 'grant_type=password&username=usr01&password=pwd...