Relationship between a categorical variable and a Bernoulli variable in R












1














I would like to answer the following question:



What is the relationship between race and the likelihood of filing a state claim?



Race is a categorical variable but since the response (State_Claim_Made) is 0,1, I'm not exactly sure the best way to go about answering this question without a logistic model.



Below is my code for State_Claim_Made prediction over time (Convicted) which works perfectly.



ggplot(jail, aes(x=Convicted, y=State_Claim_Made)) +
geom_point() +
geom_smooth(method = "glm",
method.args = list(family = "binomial"),
se = TRUE)


I am struggling however to translate this same idea to a categorical variable (Race) and it's relationship to the likelihood of filing a state claim (State_Claim_Made).



DATA SAMPLE:



structure(list(Last_Name = c("Banks", "Beamon", "Dandridge", 
"Deakle, Jr.", "Doyle", "Drinkard", "Ellis", "Embry", "Gaines",
"Gurley", "Hinton", "Holemon", "Holsomback", "Hunt", "Jones",
"Mahan", "Mahan", "McMillian", "Moore", "Padgett"), First_Name = c("Medell",
"Melvin Todd", "Beniah Alton", "Evan Lee", "Robert E.", "Gary",
"Andre", "Anthony", "Freddie Lee", "Timothy", "Anthony", "Jeffrey",
"John", "H. Guy", "Lydia Diane", "Dale", "Ronnie", "Walter",
"Daniel Wade", "Larry Randal"), Age = c("27", "24", "29", "59",
"44", "37", "35", "23", "22", "22", "29", "23", "33", "54", "40",
"22", "26", "45", "24", "40"), Race = c("Black", "Black", "Caucasian",
"Caucasian", "Caucasian", "Caucasian", "Black", "Black", "Black",
"Caucasian", "Black", "Caucasian", "Caucasian", "Caucasian",
"Black", "Caucasian", "Caucasian", "Black", "Caucasian", "Caucasian"
), Sex = c("Male", "Male", "Male", "Male", "Male", "Male", "Male",
"Male", "Male", "Male", "Male", "Male", "Male", "Male", "Female",
"Male", "Male", "Male", "Male", "Male"), State = c("Alabama",
"Alabama", "Alabama", "Alabama", "Alabama", "Alabama", "Alabama",
"Alabama", "Alabama", "Alabama", "Alabama", "Alabama", "Alabama",
"Alabama", "Alabama", "Alabama", "Alabama", "Alabama", "Alabama",
"Alabama"), CIU = c(0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0,
0, 0, 0, 0, 1, 0), Guilty_Plea = c(1, 0, 0, 0, 0, 0, 0, 1, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), IO = c(0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), Worst_Crime = c(6, 1,
1, 4, 4, 1, 2, 1, 1, 6, 1, 2, 4, 6, 3, 2, 2, 1, 1, 1), Occurred = c(1999,
1988, 1994, 2014, 1991, 1993, 2012, 1992, 1972, 1999, 1985, 1987,
1987, 1987, 1997, 1983, 1983, 1986, 1999, 1990), Convicted = c(2001,
1989, 1996, 2015, 1992, 1995, 2013, 1993, 1974, 2000, 1986, 1988,
1988, 1993, 2000, 1986, 1986, 1988, 2002, 1992), Exonerated = c(2003,
1990, 2015, 2015, 2001, 2001, 2014, 1997, 1991, 2002, 2015, 1999,
2000, 1998, 2006, 1998, 1998, 1993, 2009, 1997), Sentence = c("15",
"25", "Life", "Not sentenced", "20", "Death", "85", "20", "30",
"35", "Death", "Life", "25", "Probation", "Life without parole",
"35", "Life without parole", "Death", "Death", "Death"), Death_Penalty = c(0,
0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1), DNA_Only = c(0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0), FC = c(1,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), MWID = c(0,
0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0), F_MFE = c(0,
0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1), P_FA = c(1,
1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0), OM = c(1,
1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1), ILD = c(0,
0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0), State_Statute = c("Y",
"Y", "Y", "Y", "Y", "Y", "Y", "Y", "Y", "Y", "Y", "Y", "Y", "Y",
"Y", "Y", "Y", "Y", "Y", "Y"), State_Claim_Made = c(0, 0, 1,
0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1 0), Zero_time = c(0,
0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0), Prem = c(0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), Pending = c(0,
0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0), Denied = c(0,
0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), State_Award = c("0",
"0", "2", "0", "1", "0", "0", "0", "1", "0", "2", "0", "0", "0",
"0", "0", "0", "0", "0", "0"), Amount = c("0", "0", NA, "0",
"129041.88", "0", "0", "0", "1000000", "0", NA, "0", "0", "0",
"0", "0", "0", "0", "0", "0"), `Non-Statutory_Case_Filed` = c(0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0), No_Time = c(0,
0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0), Unfiled = c(1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1), Dismissed = c(0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0), Pending__1 = c(0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), Award = c(0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0), Premature = c(0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), Amount__1 = c("0",
"0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0",
"0", "0", "0", "$ undisclosed", "0", "0"), Years_Lost = c(1.7,
0.1, 19.5, 0, 2.6, 5.7, 1.8, 4, 10.7, 1.5, 28.5, 10.6, 10.1,
0, 5.8, 11.4, 11.4, 4.5, 5.4, 5.5), State_Award2 = c("0", "0",
"0", "0", "1", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0",
"0", "0", "0", "0", "0")), row.names = c(NA, -20L), class = c("tbl_df",
"tbl", "data.frame"))









share|cite|improve this question













migrated from stackoverflow.com Nov 24 '18 at 10:20


This question came from our site for professional and enthusiast programmers.




















    1














    I would like to answer the following question:



    What is the relationship between race and the likelihood of filing a state claim?



    Race is a categorical variable but since the response (State_Claim_Made) is 0,1, I'm not exactly sure the best way to go about answering this question without a logistic model.



    Below is my code for State_Claim_Made prediction over time (Convicted) which works perfectly.



    ggplot(jail, aes(x=Convicted, y=State_Claim_Made)) +
    geom_point() +
    geom_smooth(method = "glm",
    method.args = list(family = "binomial"),
    se = TRUE)


    I am struggling however to translate this same idea to a categorical variable (Race) and it's relationship to the likelihood of filing a state claim (State_Claim_Made).



    DATA SAMPLE:



    structure(list(Last_Name = c("Banks", "Beamon", "Dandridge", 
    "Deakle, Jr.", "Doyle", "Drinkard", "Ellis", "Embry", "Gaines",
    "Gurley", "Hinton", "Holemon", "Holsomback", "Hunt", "Jones",
    "Mahan", "Mahan", "McMillian", "Moore", "Padgett"), First_Name = c("Medell",
    "Melvin Todd", "Beniah Alton", "Evan Lee", "Robert E.", "Gary",
    "Andre", "Anthony", "Freddie Lee", "Timothy", "Anthony", "Jeffrey",
    "John", "H. Guy", "Lydia Diane", "Dale", "Ronnie", "Walter",
    "Daniel Wade", "Larry Randal"), Age = c("27", "24", "29", "59",
    "44", "37", "35", "23", "22", "22", "29", "23", "33", "54", "40",
    "22", "26", "45", "24", "40"), Race = c("Black", "Black", "Caucasian",
    "Caucasian", "Caucasian", "Caucasian", "Black", "Black", "Black",
    "Caucasian", "Black", "Caucasian", "Caucasian", "Caucasian",
    "Black", "Caucasian", "Caucasian", "Black", "Caucasian", "Caucasian"
    ), Sex = c("Male", "Male", "Male", "Male", "Male", "Male", "Male",
    "Male", "Male", "Male", "Male", "Male", "Male", "Male", "Female",
    "Male", "Male", "Male", "Male", "Male"), State = c("Alabama",
    "Alabama", "Alabama", "Alabama", "Alabama", "Alabama", "Alabama",
    "Alabama", "Alabama", "Alabama", "Alabama", "Alabama", "Alabama",
    "Alabama", "Alabama", "Alabama", "Alabama", "Alabama", "Alabama",
    "Alabama"), CIU = c(0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0,
    0, 0, 0, 0, 1, 0), Guilty_Plea = c(1, 0, 0, 0, 0, 0, 0, 1, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), IO = c(0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), Worst_Crime = c(6, 1,
    1, 4, 4, 1, 2, 1, 1, 6, 1, 2, 4, 6, 3, 2, 2, 1, 1, 1), Occurred = c(1999,
    1988, 1994, 2014, 1991, 1993, 2012, 1992, 1972, 1999, 1985, 1987,
    1987, 1987, 1997, 1983, 1983, 1986, 1999, 1990), Convicted = c(2001,
    1989, 1996, 2015, 1992, 1995, 2013, 1993, 1974, 2000, 1986, 1988,
    1988, 1993, 2000, 1986, 1986, 1988, 2002, 1992), Exonerated = c(2003,
    1990, 2015, 2015, 2001, 2001, 2014, 1997, 1991, 2002, 2015, 1999,
    2000, 1998, 2006, 1998, 1998, 1993, 2009, 1997), Sentence = c("15",
    "25", "Life", "Not sentenced", "20", "Death", "85", "20", "30",
    "35", "Death", "Life", "25", "Probation", "Life without parole",
    "35", "Life without parole", "Death", "Death", "Death"), Death_Penalty = c(0,
    0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1), DNA_Only = c(0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0), FC = c(1,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), MWID = c(0,
    0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0), F_MFE = c(0,
    0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1), P_FA = c(1,
    1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0), OM = c(1,
    1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1), ILD = c(0,
    0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0), State_Statute = c("Y",
    "Y", "Y", "Y", "Y", "Y", "Y", "Y", "Y", "Y", "Y", "Y", "Y", "Y",
    "Y", "Y", "Y", "Y", "Y", "Y"), State_Claim_Made = c(0, 0, 1,
    0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1 0), Zero_time = c(0,
    0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0), Prem = c(0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), Pending = c(0,
    0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0), Denied = c(0,
    0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), State_Award = c("0",
    "0", "2", "0", "1", "0", "0", "0", "1", "0", "2", "0", "0", "0",
    "0", "0", "0", "0", "0", "0"), Amount = c("0", "0", NA, "0",
    "129041.88", "0", "0", "0", "1000000", "0", NA, "0", "0", "0",
    "0", "0", "0", "0", "0", "0"), `Non-Statutory_Case_Filed` = c(0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0), No_Time = c(0,
    0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0), Unfiled = c(1,
    1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1), Dismissed = c(0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0), Pending__1 = c(0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), Award = c(0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0), Premature = c(0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), Amount__1 = c("0",
    "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0",
    "0", "0", "0", "$ undisclosed", "0", "0"), Years_Lost = c(1.7,
    0.1, 19.5, 0, 2.6, 5.7, 1.8, 4, 10.7, 1.5, 28.5, 10.6, 10.1,
    0, 5.8, 11.4, 11.4, 4.5, 5.4, 5.5), State_Award2 = c("0", "0",
    "0", "0", "1", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0",
    "0", "0", "0", "0", "0")), row.names = c(NA, -20L), class = c("tbl_df",
    "tbl", "data.frame"))









    share|cite|improve this question













    migrated from stackoverflow.com Nov 24 '18 at 10:20


    This question came from our site for professional and enthusiast programmers.


















      1












      1








      1







      I would like to answer the following question:



      What is the relationship between race and the likelihood of filing a state claim?



      Race is a categorical variable but since the response (State_Claim_Made) is 0,1, I'm not exactly sure the best way to go about answering this question without a logistic model.



      Below is my code for State_Claim_Made prediction over time (Convicted) which works perfectly.



      ggplot(jail, aes(x=Convicted, y=State_Claim_Made)) +
      geom_point() +
      geom_smooth(method = "glm",
      method.args = list(family = "binomial"),
      se = TRUE)


      I am struggling however to translate this same idea to a categorical variable (Race) and it's relationship to the likelihood of filing a state claim (State_Claim_Made).



      DATA SAMPLE:



      structure(list(Last_Name = c("Banks", "Beamon", "Dandridge", 
      "Deakle, Jr.", "Doyle", "Drinkard", "Ellis", "Embry", "Gaines",
      "Gurley", "Hinton", "Holemon", "Holsomback", "Hunt", "Jones",
      "Mahan", "Mahan", "McMillian", "Moore", "Padgett"), First_Name = c("Medell",
      "Melvin Todd", "Beniah Alton", "Evan Lee", "Robert E.", "Gary",
      "Andre", "Anthony", "Freddie Lee", "Timothy", "Anthony", "Jeffrey",
      "John", "H. Guy", "Lydia Diane", "Dale", "Ronnie", "Walter",
      "Daniel Wade", "Larry Randal"), Age = c("27", "24", "29", "59",
      "44", "37", "35", "23", "22", "22", "29", "23", "33", "54", "40",
      "22", "26", "45", "24", "40"), Race = c("Black", "Black", "Caucasian",
      "Caucasian", "Caucasian", "Caucasian", "Black", "Black", "Black",
      "Caucasian", "Black", "Caucasian", "Caucasian", "Caucasian",
      "Black", "Caucasian", "Caucasian", "Black", "Caucasian", "Caucasian"
      ), Sex = c("Male", "Male", "Male", "Male", "Male", "Male", "Male",
      "Male", "Male", "Male", "Male", "Male", "Male", "Male", "Female",
      "Male", "Male", "Male", "Male", "Male"), State = c("Alabama",
      "Alabama", "Alabama", "Alabama", "Alabama", "Alabama", "Alabama",
      "Alabama", "Alabama", "Alabama", "Alabama", "Alabama", "Alabama",
      "Alabama", "Alabama", "Alabama", "Alabama", "Alabama", "Alabama",
      "Alabama"), CIU = c(0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0,
      0, 0, 0, 0, 1, 0), Guilty_Plea = c(1, 0, 0, 0, 0, 0, 0, 1, 0,
      0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), IO = c(0, 0, 0, 0, 0, 0, 0,
      0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), Worst_Crime = c(6, 1,
      1, 4, 4, 1, 2, 1, 1, 6, 1, 2, 4, 6, 3, 2, 2, 1, 1, 1), Occurred = c(1999,
      1988, 1994, 2014, 1991, 1993, 2012, 1992, 1972, 1999, 1985, 1987,
      1987, 1987, 1997, 1983, 1983, 1986, 1999, 1990), Convicted = c(2001,
      1989, 1996, 2015, 1992, 1995, 2013, 1993, 1974, 2000, 1986, 1988,
      1988, 1993, 2000, 1986, 1986, 1988, 2002, 1992), Exonerated = c(2003,
      1990, 2015, 2015, 2001, 2001, 2014, 1997, 1991, 2002, 2015, 1999,
      2000, 1998, 2006, 1998, 1998, 1993, 2009, 1997), Sentence = c("15",
      "25", "Life", "Not sentenced", "20", "Death", "85", "20", "30",
      "35", "Death", "Life", "25", "Probation", "Life without parole",
      "35", "Life without parole", "Death", "Death", "Death"), Death_Penalty = c(0,
      0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1), DNA_Only = c(0,
      0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0), FC = c(1,
      0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), MWID = c(0,
      0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0), F_MFE = c(0,
      0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1), P_FA = c(1,
      1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0), OM = c(1,
      1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1), ILD = c(0,
      0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0), State_Statute = c("Y",
      "Y", "Y", "Y", "Y", "Y", "Y", "Y", "Y", "Y", "Y", "Y", "Y", "Y",
      "Y", "Y", "Y", "Y", "Y", "Y"), State_Claim_Made = c(0, 0, 1,
      0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1 0), Zero_time = c(0,
      0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0), Prem = c(0,
      0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), Pending = c(0,
      0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0), Denied = c(0,
      0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), State_Award = c("0",
      "0", "2", "0", "1", "0", "0", "0", "1", "0", "2", "0", "0", "0",
      "0", "0", "0", "0", "0", "0"), Amount = c("0", "0", NA, "0",
      "129041.88", "0", "0", "0", "1000000", "0", NA, "0", "0", "0",
      "0", "0", "0", "0", "0", "0"), `Non-Statutory_Case_Filed` = c(0,
      0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0), No_Time = c(0,
      0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0), Unfiled = c(1,
      1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1), Dismissed = c(0,
      0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0), Pending__1 = c(0,
      0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), Award = c(0,
      0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0), Premature = c(0,
      0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), Amount__1 = c("0",
      "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0",
      "0", "0", "0", "$ undisclosed", "0", "0"), Years_Lost = c(1.7,
      0.1, 19.5, 0, 2.6, 5.7, 1.8, 4, 10.7, 1.5, 28.5, 10.6, 10.1,
      0, 5.8, 11.4, 11.4, 4.5, 5.4, 5.5), State_Award2 = c("0", "0",
      "0", "0", "1", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0",
      "0", "0", "0", "0", "0")), row.names = c(NA, -20L), class = c("tbl_df",
      "tbl", "data.frame"))









      share|cite|improve this question













      I would like to answer the following question:



      What is the relationship between race and the likelihood of filing a state claim?



      Race is a categorical variable but since the response (State_Claim_Made) is 0,1, I'm not exactly sure the best way to go about answering this question without a logistic model.



      Below is my code for State_Claim_Made prediction over time (Convicted) which works perfectly.



      ggplot(jail, aes(x=Convicted, y=State_Claim_Made)) +
      geom_point() +
      geom_smooth(method = "glm",
      method.args = list(family = "binomial"),
      se = TRUE)


      I am struggling however to translate this same idea to a categorical variable (Race) and it's relationship to the likelihood of filing a state claim (State_Claim_Made).



      DATA SAMPLE:



      structure(list(Last_Name = c("Banks", "Beamon", "Dandridge", 
      "Deakle, Jr.", "Doyle", "Drinkard", "Ellis", "Embry", "Gaines",
      "Gurley", "Hinton", "Holemon", "Holsomback", "Hunt", "Jones",
      "Mahan", "Mahan", "McMillian", "Moore", "Padgett"), First_Name = c("Medell",
      "Melvin Todd", "Beniah Alton", "Evan Lee", "Robert E.", "Gary",
      "Andre", "Anthony", "Freddie Lee", "Timothy", "Anthony", "Jeffrey",
      "John", "H. Guy", "Lydia Diane", "Dale", "Ronnie", "Walter",
      "Daniel Wade", "Larry Randal"), Age = c("27", "24", "29", "59",
      "44", "37", "35", "23", "22", "22", "29", "23", "33", "54", "40",
      "22", "26", "45", "24", "40"), Race = c("Black", "Black", "Caucasian",
      "Caucasian", "Caucasian", "Caucasian", "Black", "Black", "Black",
      "Caucasian", "Black", "Caucasian", "Caucasian", "Caucasian",
      "Black", "Caucasian", "Caucasian", "Black", "Caucasian", "Caucasian"
      ), Sex = c("Male", "Male", "Male", "Male", "Male", "Male", "Male",
      "Male", "Male", "Male", "Male", "Male", "Male", "Male", "Female",
      "Male", "Male", "Male", "Male", "Male"), State = c("Alabama",
      "Alabama", "Alabama", "Alabama", "Alabama", "Alabama", "Alabama",
      "Alabama", "Alabama", "Alabama", "Alabama", "Alabama", "Alabama",
      "Alabama", "Alabama", "Alabama", "Alabama", "Alabama", "Alabama",
      "Alabama"), CIU = c(0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0,
      0, 0, 0, 0, 1, 0), Guilty_Plea = c(1, 0, 0, 0, 0, 0, 0, 1, 0,
      0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), IO = c(0, 0, 0, 0, 0, 0, 0,
      0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), Worst_Crime = c(6, 1,
      1, 4, 4, 1, 2, 1, 1, 6, 1, 2, 4, 6, 3, 2, 2, 1, 1, 1), Occurred = c(1999,
      1988, 1994, 2014, 1991, 1993, 2012, 1992, 1972, 1999, 1985, 1987,
      1987, 1987, 1997, 1983, 1983, 1986, 1999, 1990), Convicted = c(2001,
      1989, 1996, 2015, 1992, 1995, 2013, 1993, 1974, 2000, 1986, 1988,
      1988, 1993, 2000, 1986, 1986, 1988, 2002, 1992), Exonerated = c(2003,
      1990, 2015, 2015, 2001, 2001, 2014, 1997, 1991, 2002, 2015, 1999,
      2000, 1998, 2006, 1998, 1998, 1993, 2009, 1997), Sentence = c("15",
      "25", "Life", "Not sentenced", "20", "Death", "85", "20", "30",
      "35", "Death", "Life", "25", "Probation", "Life without parole",
      "35", "Life without parole", "Death", "Death", "Death"), Death_Penalty = c(0,
      0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1), DNA_Only = c(0,
      0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0), FC = c(1,
      0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), MWID = c(0,
      0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0), F_MFE = c(0,
      0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1), P_FA = c(1,
      1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0), OM = c(1,
      1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1), ILD = c(0,
      0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0), State_Statute = c("Y",
      "Y", "Y", "Y", "Y", "Y", "Y", "Y", "Y", "Y", "Y", "Y", "Y", "Y",
      "Y", "Y", "Y", "Y", "Y", "Y"), State_Claim_Made = c(0, 0, 1,
      0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1 0), Zero_time = c(0,
      0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0), Prem = c(0,
      0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), Pending = c(0,
      0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0), Denied = c(0,
      0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), State_Award = c("0",
      "0", "2", "0", "1", "0", "0", "0", "1", "0", "2", "0", "0", "0",
      "0", "0", "0", "0", "0", "0"), Amount = c("0", "0", NA, "0",
      "129041.88", "0", "0", "0", "1000000", "0", NA, "0", "0", "0",
      "0", "0", "0", "0", "0", "0"), `Non-Statutory_Case_Filed` = c(0,
      0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0), No_Time = c(0,
      0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0), Unfiled = c(1,
      1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1), Dismissed = c(0,
      0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0), Pending__1 = c(0,
      0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), Award = c(0,
      0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0), Premature = c(0,
      0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), Amount__1 = c("0",
      "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0",
      "0", "0", "0", "$ undisclosed", "0", "0"), Years_Lost = c(1.7,
      0.1, 19.5, 0, 2.6, 5.7, 1.8, 4, 10.7, 1.5, 28.5, 10.6, 10.1,
      0, 5.8, 11.4, 11.4, 4.5, 5.4, 5.5), State_Award2 = c("0", "0",
      "0", "0", "1", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0",
      "0", "0", "0", "0", "0")), row.names = c(NA, -20L), class = c("tbl_df",
      "tbl", "data.frame"))






      r ggplot2 categorical-data






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Nov 23 '18 at 22:47









      Juanito TomasJuanito Tomas

      111




      111




      migrated from stackoverflow.com Nov 24 '18 at 10:20


      This question came from our site for professional and enthusiast programmers.






      migrated from stackoverflow.com Nov 24 '18 at 10:20


      This question came from our site for professional and enthusiast programmers.
























          1 Answer
          1






          active

          oldest

          votes


















          2














          You can still use a logistic model with a categorical predictor:



          g1 <- glm(State_Claim_Made ~ Race, family=binomial, data=jail)
          summary(g1)
          ## Coefficients:
          ## Estimate Std. Error z value Pr(>|z|)
          ## (Intercept) -2.056e-16 7.071e-01 0.000 1.000
          ## RaceCaucasian -6.931e-01 9.354e-01 -0.741 0.459


          In this case the log-odds difference between baseline (Black) and
          Caucasian is -0.693 (log-odds of State_Claim_Made is lower
          for Caucasian), but not significantly <0. For a sample size this small, the results of a GLM need to be interpreted very cautiously ...



          Or you can use a contingency table approach:



          (tt <- with(jail, table(Race,State_Claim_Made))
          ## State_Claim_Made
          ## Race 0 1
          ## Black 4 4
          ## Caucasian 8 4

          chisq.test(tt, simulate.p.value=TRUE)
          ## data: tt
          ## X-squared = 0.55556, df = NA, p-value = 0.6432


          I prefer the GLM as it's more flexible and gives you an effect size, but the contingency table analysis might be preferred for simplicity (and accuracy for small sample sizes).






          share|cite|improve this answer























          • Hmmmm, I see what you did here but how exactly would the coefficients explain the relationship between a race and their individual liklihood to see state claims? @Ben_Bolker
            – Juanito Tomas
            Nov 23 '18 at 23:45










          • Also, how do you justify doing a contingency table over an ANOVA test?
            – Juanito Tomas
            Nov 26 '18 at 23:35











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "65"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: false,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: null,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstats.stackexchange.com%2fquestions%2f378529%2frelationship-between-a-categorical-variable-and-a-bernoulli-variable-in-r%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          2














          You can still use a logistic model with a categorical predictor:



          g1 <- glm(State_Claim_Made ~ Race, family=binomial, data=jail)
          summary(g1)
          ## Coefficients:
          ## Estimate Std. Error z value Pr(>|z|)
          ## (Intercept) -2.056e-16 7.071e-01 0.000 1.000
          ## RaceCaucasian -6.931e-01 9.354e-01 -0.741 0.459


          In this case the log-odds difference between baseline (Black) and
          Caucasian is -0.693 (log-odds of State_Claim_Made is lower
          for Caucasian), but not significantly <0. For a sample size this small, the results of a GLM need to be interpreted very cautiously ...



          Or you can use a contingency table approach:



          (tt <- with(jail, table(Race,State_Claim_Made))
          ## State_Claim_Made
          ## Race 0 1
          ## Black 4 4
          ## Caucasian 8 4

          chisq.test(tt, simulate.p.value=TRUE)
          ## data: tt
          ## X-squared = 0.55556, df = NA, p-value = 0.6432


          I prefer the GLM as it's more flexible and gives you an effect size, but the contingency table analysis might be preferred for simplicity (and accuracy for small sample sizes).






          share|cite|improve this answer























          • Hmmmm, I see what you did here but how exactly would the coefficients explain the relationship between a race and their individual liklihood to see state claims? @Ben_Bolker
            – Juanito Tomas
            Nov 23 '18 at 23:45










          • Also, how do you justify doing a contingency table over an ANOVA test?
            – Juanito Tomas
            Nov 26 '18 at 23:35
















          2














          You can still use a logistic model with a categorical predictor:



          g1 <- glm(State_Claim_Made ~ Race, family=binomial, data=jail)
          summary(g1)
          ## Coefficients:
          ## Estimate Std. Error z value Pr(>|z|)
          ## (Intercept) -2.056e-16 7.071e-01 0.000 1.000
          ## RaceCaucasian -6.931e-01 9.354e-01 -0.741 0.459


          In this case the log-odds difference between baseline (Black) and
          Caucasian is -0.693 (log-odds of State_Claim_Made is lower
          for Caucasian), but not significantly <0. For a sample size this small, the results of a GLM need to be interpreted very cautiously ...



          Or you can use a contingency table approach:



          (tt <- with(jail, table(Race,State_Claim_Made))
          ## State_Claim_Made
          ## Race 0 1
          ## Black 4 4
          ## Caucasian 8 4

          chisq.test(tt, simulate.p.value=TRUE)
          ## data: tt
          ## X-squared = 0.55556, df = NA, p-value = 0.6432


          I prefer the GLM as it's more flexible and gives you an effect size, but the contingency table analysis might be preferred for simplicity (and accuracy for small sample sizes).






          share|cite|improve this answer























          • Hmmmm, I see what you did here but how exactly would the coefficients explain the relationship between a race and their individual liklihood to see state claims? @Ben_Bolker
            – Juanito Tomas
            Nov 23 '18 at 23:45










          • Also, how do you justify doing a contingency table over an ANOVA test?
            – Juanito Tomas
            Nov 26 '18 at 23:35














          2












          2








          2






          You can still use a logistic model with a categorical predictor:



          g1 <- glm(State_Claim_Made ~ Race, family=binomial, data=jail)
          summary(g1)
          ## Coefficients:
          ## Estimate Std. Error z value Pr(>|z|)
          ## (Intercept) -2.056e-16 7.071e-01 0.000 1.000
          ## RaceCaucasian -6.931e-01 9.354e-01 -0.741 0.459


          In this case the log-odds difference between baseline (Black) and
          Caucasian is -0.693 (log-odds of State_Claim_Made is lower
          for Caucasian), but not significantly <0. For a sample size this small, the results of a GLM need to be interpreted very cautiously ...



          Or you can use a contingency table approach:



          (tt <- with(jail, table(Race,State_Claim_Made))
          ## State_Claim_Made
          ## Race 0 1
          ## Black 4 4
          ## Caucasian 8 4

          chisq.test(tt, simulate.p.value=TRUE)
          ## data: tt
          ## X-squared = 0.55556, df = NA, p-value = 0.6432


          I prefer the GLM as it's more flexible and gives you an effect size, but the contingency table analysis might be preferred for simplicity (and accuracy for small sample sizes).






          share|cite|improve this answer














          You can still use a logistic model with a categorical predictor:



          g1 <- glm(State_Claim_Made ~ Race, family=binomial, data=jail)
          summary(g1)
          ## Coefficients:
          ## Estimate Std. Error z value Pr(>|z|)
          ## (Intercept) -2.056e-16 7.071e-01 0.000 1.000
          ## RaceCaucasian -6.931e-01 9.354e-01 -0.741 0.459


          In this case the log-odds difference between baseline (Black) and
          Caucasian is -0.693 (log-odds of State_Claim_Made is lower
          for Caucasian), but not significantly <0. For a sample size this small, the results of a GLM need to be interpreted very cautiously ...



          Or you can use a contingency table approach:



          (tt <- with(jail, table(Race,State_Claim_Made))
          ## State_Claim_Made
          ## Race 0 1
          ## Black 4 4
          ## Caucasian 8 4

          chisq.test(tt, simulate.p.value=TRUE)
          ## data: tt
          ## X-squared = 0.55556, df = NA, p-value = 0.6432


          I prefer the GLM as it's more flexible and gives you an effect size, but the contingency table analysis might be preferred for simplicity (and accuracy for small sample sizes).







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Nov 27 '18 at 15:17

























          answered Nov 23 '18 at 23:02









          Ben BolkerBen Bolker

          22.8k16191




          22.8k16191












          • Hmmmm, I see what you did here but how exactly would the coefficients explain the relationship between a race and their individual liklihood to see state claims? @Ben_Bolker
            – Juanito Tomas
            Nov 23 '18 at 23:45










          • Also, how do you justify doing a contingency table over an ANOVA test?
            – Juanito Tomas
            Nov 26 '18 at 23:35


















          • Hmmmm, I see what you did here but how exactly would the coefficients explain the relationship between a race and their individual liklihood to see state claims? @Ben_Bolker
            – Juanito Tomas
            Nov 23 '18 at 23:45










          • Also, how do you justify doing a contingency table over an ANOVA test?
            – Juanito Tomas
            Nov 26 '18 at 23:35
















          Hmmmm, I see what you did here but how exactly would the coefficients explain the relationship between a race and their individual liklihood to see state claims? @Ben_Bolker
          – Juanito Tomas
          Nov 23 '18 at 23:45




          Hmmmm, I see what you did here but how exactly would the coefficients explain the relationship between a race and their individual liklihood to see state claims? @Ben_Bolker
          – Juanito Tomas
          Nov 23 '18 at 23:45












          Also, how do you justify doing a contingency table over an ANOVA test?
          – Juanito Tomas
          Nov 26 '18 at 23:35




          Also, how do you justify doing a contingency table over an ANOVA test?
          – Juanito Tomas
          Nov 26 '18 at 23:35


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Cross Validated!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstats.stackexchange.com%2fquestions%2f378529%2frelationship-between-a-categorical-variable-and-a-bernoulli-variable-in-r%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          A CLEAN and SIMPLE way to add appendices to Table of Contents and bookmarks

          Calculate evaluation metrics using cross_val_predict sklearn

          Insert data from modal to MySQL (multiple modal on website)