Python





Disambig grey.svg Nota: Para outros significados, veja Python (desambiguação).



























































































































































































































































































































































































































































































































































































































































































































































































































































































































































Python

Logo do Python

Paradigma

Multiparadigma:
Orientação a objetos
Programação imperativa
Programação funcional
Surgido em

1991 (27–28 anos)[1]
Última versão
3.7.0 (27 de junho de 2018; há 11 meses[2])
Criado por

Guido van Rossum[1]

Estilo de tipagem:
Dinâmica, forte
Influenciada por

ABC,[3]ALGOL 68, C[3], Haskell, Icon, Java, Lisp, Modula-3[3], Perl, Smalltalk
Influenciou

Boo, D, Falcon, Fantom, Groovy, JavaScript, Nimrod, Py, Ruby, Squirrel, Swift
Principais implementações

CPython, IronPython, Jython, PyPy

Extensão do arquivo:
.py, .pyc, .pyd, .pyo, .pyw, .pyz

Página oficial

www.python.org

Python é uma linguagem de programação de alto nível,[4]interpretada, de script, imperativa, orientada a objetos, funcional, de tipagem dinâmica e forte. Foi lançada por Guido van Rossum em 1991.[1] Atualmente possui um modelo de desenvolvimento comunitário, aberto e gerenciado pela organização sem fins lucrativos Python Software Foundation. Apesar de várias partes da linguagem possuírem padrões e especificações formais, a linguagem como um todo não é formalmente especificada. O padrão de facto é a implementação CPython.


A linguagem foi projetada com a filosofia de enfatizar a importância do esforço do programador sobre o esforço computacional. Prioriza a legibilidade do código sobre a velocidade ou expressividade. Combina uma sintaxe concisa e clara com os recursos poderosos de sua biblioteca padrão e por módulos e frameworks desenvolvidos por terceiros.


Python é uma linguagem de propósito geral de alto nível, multiparadigma, suporta o paradigma orientado a objetos, imperativo, funcional e procedural. Possui tipagem dinâmica e uma de suas principais características é permitir a fácil leitura do código e exigir poucas linhas de código se comparado ao mesmo programa em outras linguagens. Devido às suas características, ela é principalmente utilizada para processamento de textos, dados científicos e criação de CGIs para páginas dinâmicas para a web. Foi considerada pelo público a 3ª linguagem "mais amada", de acordo com uma pesquisa conduzida pelo site Stack Overflow em 2018,[5] e está entre as 5 linguagens mais populares, de acordo com uma pesquisa conduzida pela RedMonk.[6]


O nome Python teve a sua origem no grupo humorístico britânico Monty Python,[7] criador do programa Monty Python's Flying Circus, embora muitas pessoas façam associação com o réptil do mesmo nome (em português, píton ou pitão).




Índice






  • 1 História


  • 2 Filosofia


    • 2.1 Construções


    • 2.2 Tipos de dado


    • 2.3 Palavras reservadas


    • 2.4 Operadores


    • 2.5 Interpretador interativo


    • 2.6 Análise léxica


      • 2.6.1 Indentação




    • 2.7 Compilador de bytecode


    • 2.8 Orientação a objetos


    • 2.9 Programação funcional


    • 2.10 Tratamento de exceções


    • 2.11 Biblioteca padrão


    • 2.12 Interoperabilidade


    • 2.13 Comentários




  • 3 Plataformas disponíveis


  • 4 Implementações


  • 5 Desenvolvimento


  • 6 Licença


  • 7 Módulos e frameworks


    • 7.1 Interfaces gráficas




  • 8 Ambientes de desenvolvimento integrado


  • 9 Aplicações


  • 10 Ver também


  • 11 Referências


  • 12 Bibliografia


  • 13 Ligações externas





História |





Guido van Rossum, São Francisco, Califórnia


O Python foi concebido no final de 1989[4][7] por Guido van Rossum no Instituto de Pesquisa Nacional para Matemática e Ciência da Computação (CWI), nos Países Baixos, como um sucessor da ABC capaz de tratar exceções e prover interface com o sistema operacional Amoeba[8] através de scripts. Também da CWI, a linguagem ABC era mais produtiva que C, ainda que com o custo do desempenho em tempo de execução. Mas ela não possuía funcionalidades importantes para a interação com o sistema operacional, uma necessidade do grupo. Um dos focos primordiais de Python era aumentar a produtividade do programador.[7]


Python foi feita com base na linguagem ABC, possui parte da sintaxe derivada do C, compreensão de listas, funções anonimas e função map de Haskell. Os iteradores são baseados na Icon, tratamentos de exceção e módulos da Modula-3, expressões regulares de Perl.


Em 1991, Guido publicou o código (nomeado versão 0.9.0) no grupo de discussão alt.sources.[1] Nessa versão já estavam presentes classes com herança, tratamento de exceções, funções e os tipos de dado nativos list, dict, str, e assim por diante. Também estava presente nessa versão um sistema de módulos emprestado do Modula-3. O modelo de exceções também lembrava muito o do Modula-3, com a adição da opção else clause.[8]Em 1994 foi formado o principal fórum de discussão do Python, comp.lang.python, um marco para o crescimento da base de usuários da linguagem.


A versão 1.0 foi lançada em janeiro de 1994. Novas funcionalidades incluíam ferramentas para programação funcional como lambda, map, filter e reduce. A última versão enquanto Guido estava na CWI foi o Python 1.2. Em 1995, ele continuou o trabalho no CNRI em Reston, Estados Unidos, de onde lançou diversas versões. Na versão 1.4 a linguagem ganhou parâmetros nomeados (a capacidade de passar parâmetro pelo nome e não pela posição na lista de parâmetros) e suporte nativo a números complexos, assim como uma forma de encapsulamento.[9]


Ainda na CNRI, Guido lançou a iniciativa Computer Programming for Everybody (CP4E; literalmente, "Programação de Computadores para Todos"), que visava tornar a programação mais acessível, um projeto financiado pela DARPA.[10] Atualmente o CP4E encontra-se inativo.


Em 2000, o time de desenvolvimento da linguagem se mudou para a BeOpen a fim de formar o time PythonLabs. A CNRI pediu que a versão 1.6 fosse lançada para marcar o fim de desenvolvimento da linguagem naquele local. O único lançamento na BeOpen foi o Python 2.0, e após o lançamento o grupo de desenvolvedores da PythonLabs agrupou-se na Digital Creations.


Python 2.0 implementou list comprehension, uma relevante funcionalidade de linguagens funcionais como SETL e Haskell. A sintaxe da linguagem para essa construção é bastante similar a de Haskell, exceto pela preferência do Haskell por caracteres de pontuação e da preferência do python por palavras reservadas alfabéticas. Essa versão 2.0 também introduziu um sistema coletor de lixo capaz de identificar e tratar ciclos de referências.[11]


Já o 1.6 incluiu uma licença CNRI substancialmente mais longa que a licença CWI que estavam usando nas versões anteriores. Entre outras mudanças, essa licença incluía uma cláusula atestando que a licença era governada pelas leis da Virgínia. A Free Software Foundation alegou que isso era incompatível com a GNU GPL. Tanto BeOpen quanto CNRI e FSF negociaram uma mudança na licença livre do Python que o tornaria compatível com a GPL. Python 1.6.1 é idêntico ao 1.6.0, exceto por pequenas correções de falhas e uma licença nova, compatível com a GPL.[12]


Python 2.1 era parecido com as versões 1.6.1 e 2.0. Sua licença foi renomeada para Python Software Foundation License. Todo código, documentação e especificação desde o lançamento da versão alfa da 2.1 é propriedade da Python Software Foundation (PSF), uma organização sem fins lucrativos fundada em 2001, um modelo tal qual da Apache Software Foundation.[12] O lançamento incluiu a mudança na especificação para suportar escopo aninhado, assim como outras linguagens com escopo estático.[13] Esta funcionalidade estava desativada por padrão, e somente foi requerida na versão 2.2.


Uma grande inovação da versão 2.2 foi a unificação dos tipos Python (escritos em C) e classes (escritas em Python) em somente uma hierarquia. Isto tornou o modelo de objetos do Python consistentemente orientado a objeto.[14] Também foi adicionado generator, inspirado em Icon.[15]


O incremento da biblioteca padrão e as escolhas sintáticas foram fortemente influenciadas por Java em alguns casos: o pacote logging[16] introduzido na versão 2.3,[17] o analisador sintático SAX, introduzido na versão 2.0 e a sintaxe de decoradores que usa @,[18] adicionadas na versão 2.4.[19]


Em 1 de outubro de 2008 foi lançada a versão 2.6, já visando a transição para a versão 3.0 da linguagem. Entre outras modificações, foram incluídas bibliotecas para multiprocessamento, JSON e E/S, além de uma nova forma de formatação de cadeias de caracteres.[20]


Atualmente a linguagem é usada em diversas áreas, como servidores de aplicação e computação gráfica. Está disponível como linguagem de script em aplicações como OpenOffice (Python UNO Bridge), Blender e pode ser utilizada em procedimentos armazenados no sistema gerenciador de banco de dados PostgreSQL (PL/Python).


A terceira versão da linguagem foi lançada em dezembro de 2008,[21] chamada Python 3.0 ou Python 3000. Com noticiado desde antes de seu lançamento,[22] houve quebra de compatibilidade com a família 2.x para corrigir falhas que foram descobertas neste padrão, e para limpar os excessos das versões anteriores.[7] A primeira versão alfa foi lançada em 31 de agosto de 2007, a segunda em 7 de dezembro do mesmo ano.


Mudanças da versão incluem a alteração da palavra reservada print, que passa a ser uma função, tornando mais fácil a utilização de uma versão alternativa da rotina. Em Python 2.6, isso já está disponível ao adicionar o código from __future__ import print_function.[23] Também, a mudança para Unicode de todas as cadeias de caracteres.


Em 2012, foi criado o Raspberry Pi, cujo nome foi baseado na linguagem Python. Uma das principais linguagens escolhidas é Python. Python influenciou várias linguagens, algumas delas foram Boo e Cobra, que usa a indentação como definição de bloco e Go, que se baseia nos princípios de desenvolvimento rápido de Python.


Atualmente, Python é um dos componentes padrão de vários sistemas operacionais, entre eles estão a maioria das distribuições do Linux, AmigaOS 4, FreeBSD, NetBSD, OpenBSD e OS X. A linguagem se tornou a padrão no curso de ciências da computação do MIT em 2009



Filosofia |



Python 3. The standard type hierarchy.png


Parte da cultura da linguagem gira ao redor de The Zen of Python, um poema que faz parte do documento "PEP 20 (The Zen of Python)",[24] escrito pelo programador em Python de longa data Tim Peters, descrevendo sumariamente a filosofia do Python. Pode-se vê-lo através de um easter egg do Python pelo comando:


>>> import this


Construções |


Construções de Python incluem: estrutura de seleção (if, else, elif); estrutura de repetição (for, while), que itera por um container, capturando cada elemento em uma variável local dada; construção de classes (class); construção de sub-rotinas (def); construção de escopo (with), como por exemplo para adquirir um recurso.



Tipos de dado |


A tipagem de Python é forte, pois os valores e objetos têm tipos bem definidos e não sofrem coerções como em C ou Perl. São disponibilizados diversos tipos de dados nativos:





















































Tipo de dado Descrição Exemplo da sintaxe

str, unicode
Uma cadeia de caracteres imutável

'Wikipedia', u'Wikipedia'

list

Lista heterogênea mutável

[4.0, 'string', True]

tuple

Tupla imutável

(4.0, 'string', True)

set, frozenset

Conjunto não ordenado, não contém elementos duplicados

set([4.0, 'string', True])
frozenset([4.0, 'string', True])

dict

conjunto associativo

{'key1': 1.0, 'key2': False}

int
Número de precisão fixa, é transparentemente convertido para long caso não caiba em um int.

42
2147483648L

float

Ponto flutuante

3.1415927

complex

Número complexo

3+2j

bool

Booleano

True ou False

Python também permite a definição dos tipos de dados próprios, através de classes. Instâncias são construídas invocando a classe (FooClass()), e as classes são instância da classe type, o que permite metaprogramação e reflexão. Métodos são definidos como funções anexadas à classe, e a sintaxe instância.método(argumento) é um atalho para Classe.método(instância, argumento). Os métodos devem referenciar explicitamente a referência para o objeto incluindo o parâmetro self como o primeiro argumento do método.[25]


Antes da versão 3.0, Python possuía dois tipos de classes: "old-style" e "new-style". Classes old-style foram eliminadas no Python 3.0, e todas são new-style. Em versões entre 2.2 e 3.0, ambos tipos de classes podiam ser usadas. A sintaxe de ambos estilos é a mesma, a diferença acaba sendo de onde objeto da classe é herdado, direta ou indiretamente (todas classes new-style herdam de object e são instancias de type). As classes new-styles nada mais são que tipos definidos pelo usuário.



Palavras reservadas |


O Python 2.5.2 define as seguintes 31 palavras reservadas:[26]


and        del        from        not        while
as elif global or with
assert else if pass yield
break except import print
class exec in raise
continue finally is return
def for lambda try


Operadores |


Os operadores básicos de comparação como ==, <, >=, entre outros são usados em todos os tipos de dados, como números, cadeias de texto, listas e mapeamentos. Comparações em cadeia como a < b < c possuem o mesmo significado básico que na matemática: os termos são comparadas na ordem. É garantido que o processamento da expressão lógica irá terminar tão cedo o veredito seja claro, o princípio da avaliação mínima. Usando a expressão anterior, se a < b é falso, c não é avaliado.


Quanto aos operadores lógicos, até Python 2.2 não havia o tipo de dado booleano. Em todas as versões da linguagem os operadores lógicos tratam "", 0, None, 0.0, e {} como falso, enquanto o restante é tratado como verdadeiro de modo geral. Na versão 2.2.1 as constantes True e False foram adicionadas (subclasses de 1 e 0 respectivamente). A comparação binária retorna uma das duas constantes acima.


Os operadores booleanos and e or também seguem a avaliação mínima. Por exemplo, y == 0 or x/y > 100 nunca lançará a exceção de divisão por zero.



Interpretador interativo |


O interpretador interativo é uma característica diferencial da linguagem, porque há a possibilidade de testar o código de um programa e receber o resultado em tempo real, antes de iniciar a compilação ou incluí-las nos programas. Por exemplo:


>>> 1+1
2
>>>
>>> a = 1+1
>>> print a
2
>>> print(a)
2
>>>


Nota: A partir da versão 3.0, o comando print passou a ser uma função, sendo obrigatório o uso de parênteses.[27]


Análise léxica |




Exemplo de script


No segundo capítulo do Manual de Referência da Linguagem Python é citado que a análise léxica é uma análise do interpretador em si, os programas são lidos por um analisador sintático que divide o código em tokens.


Todo programa é dividido em linhas lógicas que são separadas pelo token NEWLINE ou NOVA LINHA, as linhas físicas são trechos de código divididos pelo caractere ENTER. Linhas lógicas não podem ultrapassar linhas físicas com exceção de junção de linhas, por exemplo:


if resultado > 2 and 
1 <= 5 and
2 < 5:
print ('Resultado: %f' % d)

ou


MESES_DO_ANO = ['janeiro', 'fevereiro', 'março',
'abril', 'maio', 'junho',
'julho', 'agosto', 'setembro',
'outubro', 'novembro', 'dezembro']

Para a delimitação de blocos de códigos os delimitadores são colocados em uma pilha e diferenciados por sua indentação. Iniciando a pilha com valor 0 (zero) e colocando valores maiores que os anteriores na pilha. Para cada começo de linha, o nível de indentação é comparado com o valor do topo da pilha. Se o número da linha for igual ao topo da pilha, a pilha não é alterada. Se o valor for maior a pilha recebe o nível de indentação da linha e o nome INDENT (empilhamento) se o nível de indentação for menor, então é desempilhado até chegar a um nível de indentação recebendo o nome
DEDENT (desempilhamento) e se não encontrar nenhum valor é gerado um erro de indentação.


Abaixo um exemplo de permutação, retirado do capítulo 2.1 sobre Estrutura de linhas na Análise léxica do Manual de Referência da linguagem (Language Reference Manual):


         def perm(l):                   NOVA LINHA
INDENT if len(l) <= 1: NOVA LINHA
INDENT return[1] NOVA LINHA
DEDENT r = [ ] NOVA LINHA
for i in range(len(l)): NOVA LINHA
INDENT s = l[:i] + l[i+1:] NOVA LINHA
p = perm(s) NOVA LINHA
DEDENT for x in p: NOVA LINHA
INDENT r.append(l[i:i+1]+x) NOVA LINHA
DEDENT return r



Indentação |


Python foi desenvolvido para ser uma linguagem de fácil leitura, com um visual agradável, frequentemente usando palavras e não pontuações como em outras linguagens. Para a separação de blocos de código, a linguagem usa espaços em branco e indentação ao invés de delimitadores visuais como chaves (C, Java) ou palavras (BASIC, Fortran, Pascal). Diferente de linguagens com delimitadores visuais de blocos, em Python a indentação é obrigatória. O aumento da indentação indica o início de um novo bloco, que termina da diminuição da indentação.


Usando um editor de texto comum é muito fácil existir erros de indentação, o recomendado é configurar o editor conforme a análise léxica do Python ou utilizar uma IDE. Todas as IDE que suportam a linguagem fazem indentação automaticamente.


Exemplo:







O código está correto para os dois exemplos, mas o analisador léxico verificará se a indentação está coerente. O analisador reconhecerá as palavras reservadas while, def, try, except, return, print e as cadeias de caracteres entre aspas simples e a indentação, e se não houver problemas o programa executará normalmente, senão apresentará a exceção: "Seu programa está com erro no bloco de indentação".



Compilador de bytecode |


A linguagem é de altíssimo nível, como já dito, mas ela também pode compilar seus programas para que a próxima vez que o executar não precise compilar novamente o programa, reduzindo o tempo de carga na execução.


Utilizando o interpretador interativo não é necessário a criação do arquivo de Python compilado, os comandos são executados interativamente. Porém quando um programa ou um módulo é evocado, o interpretador realiza a análise léxica e sintática, compila o código de alto nível se necessário e o executa na máquina virtual da linguagem.


O bytecode é armazenado em arquivos com extensão .pyc ou .pyo, este último no caso de bytecode otimizado. Interessante notar que o bytecode da linguagem também é de alto nível, ou seja, é mais legível aos seres humanos que o código de byte do C, por exemplo. Para descompilar um código de byte é utilizado o módulo dis da biblioteca padrão da linguagem e existem módulos de terceiros que tornam o bytecode mais confuso, tornando a descompilação ineficaz.


Normalmente, o Python trabalha com dois grupos de arquivos:



  1. Os módulos do núcleo da linguagem, sua biblioteca padrão e os módulos independentes, criados pelo usuário.

  2. No núcleo do interpretador existe o analisador léxico, o analisador sintático que utiliza Estruturas de Objetos (tempo de execução), o Compilador que aloca memória (tempo de execução) e depois do Avaliador de código que modifica o estado atual do programa (tempo de execução), mostrando resultado para o usuário.



Orientação a objetos |


Python suporta a maioria das técnicas da programação orientada a objeto. Qualquer objeto pode ser usado para qualquer tipo, e o código funcionará enquanto haja métodos e atributos adequados. O conceito de objeto na linguagem é bastante abrangente: classes, funções, números e módulos são todos considerados objetos. Também há suporte para metaclasses, polimorfismo, e herança (inclusive herança múltipla). Há um suporte limitado para variáveis privadas.


Na versão 2.2 de Python foi introduzido um novo estilo de classes em que objetos e tipos foram unificados, permitindo a especialização de tipos. Já a partir da versão 2.3 foi introduzido um novo método de resolução de ambiguidades para heranças múltiplas.[28]


Uma classe é definida com class nome:, e o código seguinte é a composição dos atributos. Todos os métodos da classe recebem uma referência a uma instância da própria classe como seu primeiro argumento, e a convenção é que se chame este argumento self. Assim os métodos são chamados objeto.método(argumento1, argumento2, ...) e são definidos iguais a uma função, como método(self, argumento1, argumento2, ...). Veja que o parâmetro self conterá uma referência para a instância da classe definida em objeto quando for efetuada esta chamada. Os atributos da classe podem ser acessados em qualquer lugar da classe, e os atributos de instância (ou variável de instância) devem ser declarados dentro dos métodos utilizando a referência à instância atual (self) (ver código contextualizado em anexo).


Em Python não existe proteção dos membros duma classe ou instância pelo interpretador, o chamado encapsulamento. Convenciona-se que atributos com o nome começando com um _ são de uso privado da classe, mas não há um policiamento do interpretador contra acesso a estes atributos. Uma exceção são nomes começando com __, no caso em que o interpretador modifica o nome do atributo (ver código contextualizado em anexo).


Python permite polimorfismo, que condiz com a reutilização de código. É fato que funções semelhantes em várias partes do software sejam utilizadas várias vezes, então definimos esta função como uma biblioteca e todas as outras funções que precisarem desta a chamam sem a necessidade de reescrevê-la (ver código contextualizado em anexo).


Python não possui overloading; não é possível criar duas funções com o mesmo nome, pois as elas são consideradas atributos da classe. Caso o nome da função se repita em outra assinatura, o interpretador considera esta ultima como override e sobrescreve a função anterior. Algumas operações entre diferentes tipos são realizadas através de coerção (ex.: 3.2 + 3).


É possível encapsular abstrações em módulos e pacotes, quando um arquivo é criado com a extensão .py, ele automaticamente define um módulo. Um diretório com vários módulos é chamado de pacote e deve conter um modulo chamado __init__, para defini-lo como principal. Estas diferenciações ocorrem apenas no sistema de arquivos, os objetos criados são sempre módulos, caso o código não defina qual dos módulos será importado, o padrão é o __init__.



Programação funcional |


Uma das construções funcionais de Python é compreensão de listas, uma forma de construir listas. Por exemplo, pode-se usar a técnica para calcular as cinco primeiras potências de dois. O algoritmo quicksort também pode ser expressado usando a mesma técnica (ver códigos contextualizados para ambos os casos em anexo).


Em Python, funções são objetos de primeira classe que podem ser criados e armazenados dinamicamente. O suporte a funções anônimas está na construção lambda (cálculo Lambda). Não há disponibilidade de funções anônimas de fato, pois os lambdas contêm somente expressões e não blocos de código.


Python também suporta clausuras léxicas desde a versão 2.2 (ver códigos contextualizados para ambos os casos em anexo). Já geradores foram introduzidos na versão 2.2 e finalizados na versão 2.3, e representam o mecanismo de Python para a avaliação preguiçosa de funções (ver códigos contextualizados para ambos os casos em anexo).



Tratamento de exceções |


Python suporta e faz uso constante de tratamento de exceções como uma forma de testar condições de erro e outros eventos inesperados no programa. É inclusive possível capturar uma exceção causada por um erro de sintaxe. O estilo da linguagem apóia o uso de exceções sempre que uma condição de erro pode aparecer. Por exemplo, ao invés de testar a disponibilidade de acesso a um recurso, a convenção é simplesmente tentar usar o recurso e capturar a exceção caso o acesso seja rejeitado (recurso inexistente, permissão de acesso insuficiente, recurso já em uso, ...).


Exceções são usadas frequentemente como uma estrutura de seleção, substituindo blocos if-else, especialmente em situações que envolvem threads. Uma convenção de codificação é o EAFP, do inglês, "é mais fácil pedir perdão que permissão". Isso significa que em termos de desempenho é preferível capturar exceções do que testar atributos antes de os usar. Segue abaixo exemplos de código que testam atributos ("pedem permissão") e que capturam exceções ("pedem perdão"):







Ambos os códigos produzem o mesmo efeito, mas há diferenças de desempenho. Quando spam possui o atributo eggs, o código que captura exceções é mais rápido. Caso contrário, a captura da exceção representa uma perda considerável de desempenho, e o código que testa o atributo é mais rápido. Na maioria dos casos o paradigma da captura de exceções é mais rápido, e também pode evitar problemas de concorrência.[29] Por exemplo, num ambiente multitarefa, o espaço de tempo entre o teste do atributo e seu uso de fato pode invalidar o atributo, problema que não acontece no caso da captura de exceções.



Biblioteca padrão |


Python possui uma grande biblioteca padrão, geralmente citada como um dos maiores trunfos da linguagem,[30] fornecendo ferramentas para diversas tarefas. Por conta da grande variedade de ferramentas fornecida pela biblioteca padrão, combinada com a habilidade de usar linguagens de nível mais baixo como C e C++, Python pode ser poderosa para conectar componentes diversos de software.


A biblioteca padrão conta com facilidades para escrever aplicações para a Internet, contando com diversos formatos e protocolos como MIME e HTTP. Também há módulos para criar interfaces gráficas, conectar em bancos de dados relacionais e manipular expressões regulares.


Algumas partes da biblioteca são cobertas por especificações (por exemplo, a implementação WSGI da wsgiref segue o PEP 333[31]), mas a maioria dos módulos não segue.



Interoperabilidade |


Um outro ponto forte da linguagem é sua capacidade de interoperar com várias outras linguagens, principalmente código nativo. A documentação da linguagem inclui exemplos de como usar a Python C-API para escrever funções em C que podem ser chamadas diretamente de código Python - mas atualmente esse sequer é o modo mais indicado de interoperação, havendo alternativas tais como Cython, Swig ou cffi. A biblioteca Boost do C++ inclui uma biblioteca para permitir a interoperabilidade entre as duas linguagens, e pacotes científicos fazem uso de bibliotecas de alta performance numérica escritos em Fortran e mantidos há décadas.



Comentários |


Python fornece duas alternativas para documentar o código. A primeira é o uso de comentários para indicar o que certo código faz. Comentários começam com # e são terminados pela quebra da linha. Não há suporte para comentários que se estendem por mais de uma linha; cada linha consecutiva de comentário deve indicar #. A segunda alternativa é o uso de cadeias de caractere, literais de texto inseridos no código sem atribuição. Cadeias de caracteres em Python são delimitadas por " ou ' para única linha e por """ ou ''' para múltiplas linhas. Entretanto, é convenção usar o métodos de múltiplas linhas em ambos os casos.


Diferente de comentários, a cadeias de caracteres usadas como documentação são objetos Python e fazem parte do código interpretado. Isso significa que um programa pode acessar sua própria documentação e manipular a informação. Há ferramentas que extraem automaticamente essa documentação para a geração da documentação de API a partir do código. Documentação através de cadeias de caracteres também pode ser acessada a partir do interpretador através da função help().



Plataformas disponíveis |


A linguagem e seu interpretador estão disponíveis para as mais diversas plataformas, desde Unix (Linux, FreeBSD, Solaris, MacOS X, etc.), Windows, .NET, versões antigas de MacOS até consoles de jogos eletrônicos ou mesmo alguns celulares, como a série 60, N8xx(PyMaemo) da Nokia e palmtops.


Para algum sistema operacional não suportado, basta que exista um compilador C disponível e gerar o Python a partir do fonte. O código fonte é traduzido pelo interpretador para o formato bytecode, que é multiplataforma e pode ser executado e distribuído sem fonte original.



Implementações |


A implementação original e mais conhecida do Python é o CPython, escrita em C e compatível com o padrão C89,[32] sendo distribuída com uma grande biblioteca padrão escrita em um misto de Python e C. Esta implementação é suportada em diversas plataformas, incluindo Microsoft Windows e sistemas Unix-like modernos.


Stackless Python é uma variação do CPython que implementa microthreads (permitindo multitarefa sem o uso de threads), sendo suportada em quase todas as plataformas que a implementação original.


Existem também implementações para plataformas já existentes: Jython para a Plataforma Java e IronPython para .NET.


Em 2005 a Nokia lançou um interpretador Python para os telefones celulares S60, chamado PyS60. Essa versão inclui vários módulos das implementações tradicionais, mas também alguns módulos adicionais para a integração com o sistema operacional Symbian. Uma implementação para Palm pode ser encontrada no Pippy. Já o PyPy, é a linguagem Python totalmente escrita em Python.


Diversas implementações, como CPython, pode funcionar como um interpretador de comandos em que o usuário executa as instruções sequencialmente, recebendo o resultado automaticamente. A execução compilada do código oferece um ganho substancial em velocidade, com o custo da perda da interatividade.



Desenvolvimento |


O desenvolvimento de Python é conduzido amplamente através do processo Python Enhancement Proposal ("PEP"), em português Proposta de Melhoria do Python. Os PEPs são documentos de projeto padronizados que fornecem informações gerais relacionadas ao Python, incluindo propostas, descrições, justificativas de projeto (design rationales) e explicações para características da linguagem. PEPs pendentes são revisados e comentados por Van Rossum, o Benevolent Dictator for Life (líder arquiteto da linguagem) do projeto Python. Desenvolvedores do CPython também se comunicam através de uma lista de discussão, python-dev, que é o fórum principal para discussão sobre o desenvolvimento da linguagem. Questões específicas são discutidas no gerenciador de erros Roundup mantido em python.org. O desenvolvimento acontece no auto-hospedado svn.python.org



Licença |


Python possui uma licença livre aprovada pela OSI e compatível com a GPL, porém menos restritiva. Ela prevê (entre outras coisas) que binários da linguagem sejam distribuídos sem a necessidade de fornecer o código fonte junto.[33]



Módulos e frameworks |


Ao longo do tempo têm sido desenvolvidos pela comunidade de programadores muitas bibliotecas de funções especializadas (módulos) que permitem expandir as capacidades base da linguagem. Entre estes módulos especializados destacam-se:
























































































Descrição Campos de atuação
Django
Framework para desenvolvimento ágil de aplicações web;

desenvolvimento web
Pylons
Framework para desenvolvimento de aplicações web;
desenvolvimento web
TurboGears
Framework baseado em várias outras tecnologias existentes no mundo que gira em torno da linguagem Python;
desenvolvimento web

Matplotlib - Matplotlib / Pylab
biblioteca para manipulação de gráficos 2D;
processamento de imagem
Python Imaging Library biblioteca para manipulação de imagens digitais; processamento de imagem

PyOpenGL - Python OpenGL Binding
suporte multiplataforma ao OpenGL;
computação gráfica
Pygame Conjunto de módulos para o desenvolvimento de jogos eletrônicos, incluindo gráficos SDL;
desenvolvimento de jogos eletrônicos; computação gráfica
Twisted
Framework para o desenvolvimento de aplicações de rede. Inclui módulos para servidor web, de aplicação, SSH e diversos outros protocolos;

desenvolvimento de software; desenvolvimento web

PYRO - Python Remote Objects

Framework para o desenvolvimento de sistemas distribuídos;

computação distribuída
ZODB Sistema de persistência e banco de dados orientado a objetos;
banco de dados
Plone SGC - Sistema de gerenciamento de conteúdo; desenvolvimento web
CherryPy
Framework para aplicações web;
desenvolvimento web
Web2py
Framework para aplicações web;
desenvolvimento web
Visual Python
Framework 3D de alto nível;
computação gráfica
SQLObject
Mapeador objeto-relacional: traduz estruturas relacionais para objetos Python e manipula o banco de dados de forma transparente;
banco de dados
Numarray Módulo para manipulação de vetores e computação científica.
computação científica


Interfaces gráficas |


Exemplos de bibliotecas de GUI disponíveis para Python incluem:



































Descrição
Tkinter Módulo padrão para GUI no Python
PyGTK interface para a biblioteca GTK+
PyQt interface para a biblioteca Qt
wxPython interface para a biblioteca wxWidgets
Etk interface para a biblioteca EFL
Wax Construído para simplificar o uso do wxPython
Kivy
Toolkit multiplataforma


Ambientes de desenvolvimento integrado |


Existem vários ambientes de desenvolvimento integrado (IDE) disponíveis para Python:











































































































































IDE Desenvolvedor Última versão Plataforma Toolkit
Licença

IDLE

Guido van Rossum et al.
Distribuído com CPython
Multiplataforma Tkinter
PSFL

PyCharm
JetBrains 2017.3 (29/11/2017) Java Swing
Apache 2.0

Komodo Edit
ActiveState 10 (17/05/2016)
Windows, Linux, macOS
XUL
MPL 1.1

Atom
GitHub 1.25.0 (15/03/2018)
Windows, Linux, macOS
Electron
MIT

GNOME Builder
GNOME Project 3.28.0 (13/03/2018) Linux GTK+
GNU GPLv3+

Pyzo
Pyzo team 4.4.3 (09/10/2017) Multiplataforma PyQt
BSD

Boa Constructor
Team 0.6.1 Independente wxPython
GNU GPL

Eric Python IDE
Detlev Offenbach 4.1.2 Independente Qt
GNU GPL

Geany
Team 1.23 Independente GTK2
GNU GPL

IronPython Studio
Clarius Labs 1.0 (10/122007) Windows
VS2008 Shell Runtime

Microsoft Public License

PyDev (Eclipse)
Appcelerator 5.7.0 (11/04/2017) Java SWT
EPL

PythonCard
Alex Tweedly 0.8.2 Multiplataforma wxPython
BSD

PyScripter
mmm-experts 1.7.2 (10/2006) Windows
MIT

Stani's Python Editor
Stani 0.8.4c (14/02/2008) Independente wxPython
GNU GPL

Spyder
Spyder developer community 2.3.2 (03/12/2014)
Windows, Linux, macOS
PyQt
MIT

Wing IDE
Wingware 3.0.2-1 (27/11/2007)
Windows, Linux, macOS
PyGTK
Proprietário


Aplicações |


Alguns dos maiores projetos que utilizam Python são o servidor de aplicação Zope, o compartilhador de arquivos Mnet, o sítio YouTube e o cliente original do BitTorrent. Grandes organizações que usam a linguagem incluem Google[34] (parte dos crawlers), Yahoo! (para o sítio de grupos de usuários) e NASA.[35] O sistema de gerenciamento de reservas da Air Canada também usa Python em alguns de seus componentes.[36] A linguagem também tem bastante uso na indústria da segurança da informação.


A linguagem tem sido embarcada como linguagem de script em diversos softwares, como em programas de edição tridimensional como Maya,[37]Autodesk Softimage, TrueSpace e Blender.[38] Programas de edição de imagem também a usam para scripts, como o GIMP.[39] Para diversos sistema operacionais a linguagem já é um componente padrão, estando disponível em diversas distribuições Linux. O Red Hat Linux usa Python para instalação, configuração e gerenciamento de pacotes.


Outros exemplos incluem o Plone, sistema de gerenciamento de conteúdo desenvolvido em Python e Zope e a Industrial Light & Magic,[40] que produz filmes da série Star Wars usando extensivamente Python para a computação gráfica nos processos de produção dos filmes.



Ver também |


  • Lista de linguagens de programação


Referências




  1. abcd «HISTORY». Fonte do Python (em inglês). Python Software Foundation. Consultado em 5 de junho de 2008  !CS1 manut: Língua não reconhecida (link)


  2. [hhttps://pythoninsider.blogspot.com/2018/06/python-3.html «Python 3.7.0 is now available (and so is 3.6.6)!»]. blog.python.org (em inglês). 27 de junho de 2018. Consultado em 30 de junho de 2018 


  3. abc Guido van Rossum (Maio de 1996). «Foreword for "Programming Python" (1st ed.)» (em inglês). Python Software Foundation. Consultado em 12 de junho de 2008 


  4. ab «The Making of Python» (em inglês). Artima Developer. Consultado em 22 de março de 2007  !CS1 manut: Língua não reconhecida (link)


  5. «Stack Overflow Developer Survey 2018». Stack Overflow. Consultado em 16 de abril de 2018 


  6. O'Grady, Stephen (7 de março de 2018). «The RedMonk Programming Language Rankings: January 2018» (em inglês). RedMonk. Consultado em 13 de março de 2018 


  7. abcd Naomi Hamilton (5 de agosto de 2008). «The A-Z of Programming Languages: Python» (em inglês). Computerworld. Consultado em 17 de agosto de 2008 


  8. ab «Why was Python created in the first place?» (em inglês). Python FAQ. Consultado em 22 de março de 2007  !CS1 manut: Língua não reconhecida (link)


  9. «LJ #37: Python 1.4 Update» (em inglês). Consultado em 29 de abril de 2007  !CS1 manut: Língua não reconhecida (link)


  10. Guido van Rossum. «Computer Programming for Everybody» (em inglês). Consultado em 22 de março de 2007  !CS1 manut: Língua não reconhecida (link)


  11. A.M. Kuchling and Moshe Zadka. «What's New in Python 2.0» (em inglês). Consultado em 22 de março de 2007  !CS1 manut: Língua não reconhecida (link)


  12. ab «History of the software». Referência da Biblioteca Python (em inglês). Consultado em 22 de março de 2007  !CS1 manut: Língua não reconhecida (link)


  13. Jeremy Hylton. «Statically Nested Scopes» (em inglês). Consultado em 22 de março de 2007  !CS1 manut: Língua não reconhecida (link)


  14. «2 PEPs 252 and 253: Type and Class Changes» (em inglês). Python Software Foundation. Consultado em 11 de junho de 2008  !CS1 manut: Língua não reconhecida (link)


  15. «4 PEP 255: Simple Generators» (em inglês). Python Software Foundation. Consultado em 11 de junho de 2008  !CS1 manut: Língua não reconhecida (link)


  16. «PEP 282 - A Logging System» (em inglês). Python Software Foundation. Consultado em 11 de junho de 2008  !CS1 manut: Língua não reconhecida (link)


  17. «8 PEP 282: The logging Package» (em inglês). Python Software Foundation. Consultado em 11 de junho de 2008  !CS1 manut: Língua não reconhecida (link)


  18. «PEP 318 - Decorators for Functions and Methods» (em inglês). Python Software Foundation. Consultado em 11 de junho de 2008  !CS1 manut: Língua não reconhecida (link)


  19. «5 PEP 318: Decorators for Functions and Methods» (em inglês). Python Software Foundation. Consultado em 11 de junho de 2008  !CS1 manut: Língua não reconhecida (link)


  20. A.M. Kuchling (1 de outubro de 2008). «What's New in Python 2.6» (em inglês). Python Software Foundation. Consultado em 3 de outubro de 2008  !CS1 manut: Língua não reconhecida (link)


  21. «Python 3.0 Release» (em inglês). Python Software Foundation. Consultado em 3 de dezembro de 2008  !CS1 manut: Língua não reconhecida (link)


  22. Sarah Stokely (1 de fevereiro de 2008). «Python 3.0 to be backwards incompatible» (em inglês). iTnews. Consultado em 11 de junho de 2008  !CS1 manut: Língua não reconhecida (link)


  23. Georg Brandl. «Make print a function» (em inglês). Consultado em 3 de outubro de 2008  !CS1 manut: Língua não reconhecida (link)


  24. «PEP 20 - The Zen of Python» (em inglês). Python - Núcleo de Desenvolvimento. Consultado em 15 de janeiro de 2010  !CS1 manut: Língua não reconhecida (link)


  25. «Classes — Random Remarks». Python Documentation (em inglês). Python Software Foundation  !CS1 manut: Língua não reconhecida (link)


  26. «Keywords». Manual de Referência do Python (em inglês). Python Software Foundation. 21 de fevereiro de 2008. Consultado em 12 de setembro de 2008  !CS1 manut: Língua não reconhecida (link)


  27. «What's New In Python 3.0» (em inglês). Python Software Foundation. Consultado em 15 de janeiro de 2011 


  28. Michele Simionato. «The Python 2.3 Method Resolution Order» (em inglês). Python Software Foundation. Consultado em 11 de junho de 2008  !CS1 manut: Língua não reconhecida (link)


  29. «EAFP vs LBYL (was Re: A little disappointed so far)». web.archive.org. Consultado em 6 de maio de 2012. Cópia arquivada em 29 de setembro de 2007 


  30. Przemyslaw Piotrowski (Julho de 2006). «Build a Rapid Web Development Environment for Python Server Pages and Oracle» (em inglês). Oracle. Consultado em 11 de junho de 2008  !CS1 manut: Língua não reconhecida (link)


  31. Phillip J. Eby (7 de dezembro de 2003). «PEP 333 -- Python Web Server Gateway Interface v1.0» (em inglês). Python Software Foundation. Consultado em 11 de junho de 2008  !CS1 manut: Língua não reconhecida (link)


  32. Guido van Rossum (5 de julho de 2001). «PEP 7 -- Style Guide for C Code» (em inglês). Python Software Foundation. Consultado em 11 de junho de 2008  !CS1 manut: Língua não reconhecida (link)


  33. «Python License» (em inglês). Python Software Foundation. Consultado em 11 de junho de 2008  !CS1 manut: Língua não reconhecida (link)


  34. «Quotes about Python» (em inglês). Python Software Foundation. Consultado em 11 de junho de 2008  !CS1 manut: Língua não reconhecida (link)


  35. Daniel G. Shafer (17 de janeiro de 2003). «Python Streamlines Space Shuttle Mission Design» (em inglês). Python Software Foundation. Consultado em 11 de junho de 2008  !CS1 manut: Língua não reconhecida (link)


  36. Darryl K. Taft (5 de março de 2005). «Python Slithers into Systems» (em inglês). eWEEK. Consultado em 11 de junho de 2008  !CS1 manut: Língua não reconhecida (link)


  37. «Introduction to Maya Python API». Documentação do Maya (em inglês). Autodesk. Consultado em 18 de julho de 2008  !CS1 manut: Língua não reconhecida (link)


  38. «Python Scripts» (em inglês). Blender. Consultado em 18 de julho de 2008  !CS1 manut: Língua não reconhecida (link)


  39. James Henstridge (16 de maio de 2006). «GIMP Python Documentation». Documentação do GIMP (em inglês). GIMP. Consultado em 18 de julho de 2008  !CS1 manut: Língua não reconhecida (link)


  40. Robin Rowe (1 de julho de 2002). «Industrial Light & Magic» (em inglês). Linux Journal. Consultado em 18 de julho de 2008  !CS1 manut: Língua não reconhecida (link)



Bibliografia |




  • Pilgrim, Mark (2004). Dive into Python (em inglês) 2 ed. Nova Iorque: Apress. 413 páginas. ISBN 978-1-5905-9356-1 


  • Pilgrim, Mark (2009). Dive into Python 3 (em inglês) 2 ed. Nova Iorque: Apress. 360 páginas. ISBN 978-1-4302-2415-0 


  • Downey, Allen B. (2012). Think Python (em inglês). Sebastopol (Califórnia): O'Reilly. 300 páginas. ISBN 978-1-4493-3072-9 


  • Lutz, Mark (2013). Learning Python (em inglês) 5 ed. Sebastopol (Califórnia): O'Reilly. 1600 páginas. ISBN 978-1-4493-5573-9 


  • Lutz, Mark (2010). Programming Python (em inglês) 4 ed. Sebastopol (Califórnia): O'Reilly. 1632 páginas. ISBN 978-0-596-15810-1 


  • David Beazley e Brian K. Jones (2013). Python Cookbook (em inglês) 3 ed. Sebastopol (Califórnia): O'Reilly. 706 páginas. ISBN 978-1-4493-4037-7 



Ligações externas |




















Outros projetos Wikimedia também contêm material sobre este tema:

Wikcionário

Definições no Wikcionário

Wikilivros

Livros e manuais no Wikilivros

Wikiquote

Citações no Wikiquote

Commons

Categoria no Commons



  • Commons

  • Wikiquote

  • Wikilivros

  • Wikcionário





  • Sítio oficial (em inglês)


  • Python no GitHub

  • Wiki da comunidade brasileira de usuários

  • Site da comunidade portuguesa de usuários


  • Python no DMOZ



















Popular posts from this blog

A CLEAN and SIMPLE way to add appendices to Table of Contents and bookmarks

Calculate evaluation metrics using cross_val_predict sklearn

Insert data from modal to MySQL (multiple modal on website)