Incompatible shapes between op input and calculated input gradient: conv1d_transpose












0















I am having the following error when computing the gradient.



ValueError: Incompatible shapes between op input and calculated input gradient. Forward operation: write_8/conv1d_transpose. Input index: 2. Original input shape: (100, 1, 10, 10, 100). Calculated input gradient shape: (100, 1, 13, 10)



def conv1d_layer(inp, filters, stride, output_shape=None, transpose=False):
if output_shape is not None:
output_shape = tf.constant(output_shape)
if transpose: return tf.contrib.nn.conv1d_transpose(inp,
filters, output_shape, stride, padding='SAME')
return tf.nn.conv1d(inp, filters, stride, 'SAME')

def forward(input, batch_size=100):
output = tf.reshape(output, [-1, 10, 10, 100])
init = tf.truncated_normal_initializer(stddev=1.)
filter = tf.get_variable('f1', [5, 1, 10], initializer=init)
output = conv1d_layer(output, filter, 2, [batch_size, 25, 25], True)
filter = tf.get_variable('f2', [5, 1, 25], initializer=init)
output = conv1d_layer(output, filter, 2, [batch_size, 50, 50], True)
filter = tf.get_variable('f3', [5, 1, 50], initializer=init)
out = conv1d_layer(output, filter, 2, [batch_size, 100, 100], True)
out = tf.reshape(out, [-1, 100 * 100])
vocab_size = 10000
w = tf.get_variable('w', [100*100, vocab_size], initializer=init)
b = tf.Variable(tf.zeros([vocab_size])) # biases
return tf.matmul(output, w) + b


When given some input, I do a forward pass by calling conv1d_layer. Then when I compute the gradient as follows, that's when the error happens.



output = forward(input)
loss = tf.nn.softmax_cross_entropy_with_logits_v2(logits=output, labels=classes)
optimizer = tf.train.AdamOptimizer(lr, beta1=0.5)
grads = optimizer.compute_gradients(loss)


I suspect my filters are wrong (I want to get a final shape of [100, 100, vocab_size] where vocab_size = 10000 as per above. Any help would be highly appreciated.










share|improve this question























  • I meant input in the forward method instead of output, and return tf.matmul(out, w) + b

    – Noor
    Nov 24 '18 at 17:51


















0















I am having the following error when computing the gradient.



ValueError: Incompatible shapes between op input and calculated input gradient. Forward operation: write_8/conv1d_transpose. Input index: 2. Original input shape: (100, 1, 10, 10, 100). Calculated input gradient shape: (100, 1, 13, 10)



def conv1d_layer(inp, filters, stride, output_shape=None, transpose=False):
if output_shape is not None:
output_shape = tf.constant(output_shape)
if transpose: return tf.contrib.nn.conv1d_transpose(inp,
filters, output_shape, stride, padding='SAME')
return tf.nn.conv1d(inp, filters, stride, 'SAME')

def forward(input, batch_size=100):
output = tf.reshape(output, [-1, 10, 10, 100])
init = tf.truncated_normal_initializer(stddev=1.)
filter = tf.get_variable('f1', [5, 1, 10], initializer=init)
output = conv1d_layer(output, filter, 2, [batch_size, 25, 25], True)
filter = tf.get_variable('f2', [5, 1, 25], initializer=init)
output = conv1d_layer(output, filter, 2, [batch_size, 50, 50], True)
filter = tf.get_variable('f3', [5, 1, 50], initializer=init)
out = conv1d_layer(output, filter, 2, [batch_size, 100, 100], True)
out = tf.reshape(out, [-1, 100 * 100])
vocab_size = 10000
w = tf.get_variable('w', [100*100, vocab_size], initializer=init)
b = tf.Variable(tf.zeros([vocab_size])) # biases
return tf.matmul(output, w) + b


When given some input, I do a forward pass by calling conv1d_layer. Then when I compute the gradient as follows, that's when the error happens.



output = forward(input)
loss = tf.nn.softmax_cross_entropy_with_logits_v2(logits=output, labels=classes)
optimizer = tf.train.AdamOptimizer(lr, beta1=0.5)
grads = optimizer.compute_gradients(loss)


I suspect my filters are wrong (I want to get a final shape of [100, 100, vocab_size] where vocab_size = 10000 as per above. Any help would be highly appreciated.










share|improve this question























  • I meant input in the forward method instead of output, and return tf.matmul(out, w) + b

    – Noor
    Nov 24 '18 at 17:51
















0












0








0


1






I am having the following error when computing the gradient.



ValueError: Incompatible shapes between op input and calculated input gradient. Forward operation: write_8/conv1d_transpose. Input index: 2. Original input shape: (100, 1, 10, 10, 100). Calculated input gradient shape: (100, 1, 13, 10)



def conv1d_layer(inp, filters, stride, output_shape=None, transpose=False):
if output_shape is not None:
output_shape = tf.constant(output_shape)
if transpose: return tf.contrib.nn.conv1d_transpose(inp,
filters, output_shape, stride, padding='SAME')
return tf.nn.conv1d(inp, filters, stride, 'SAME')

def forward(input, batch_size=100):
output = tf.reshape(output, [-1, 10, 10, 100])
init = tf.truncated_normal_initializer(stddev=1.)
filter = tf.get_variable('f1', [5, 1, 10], initializer=init)
output = conv1d_layer(output, filter, 2, [batch_size, 25, 25], True)
filter = tf.get_variable('f2', [5, 1, 25], initializer=init)
output = conv1d_layer(output, filter, 2, [batch_size, 50, 50], True)
filter = tf.get_variable('f3', [5, 1, 50], initializer=init)
out = conv1d_layer(output, filter, 2, [batch_size, 100, 100], True)
out = tf.reshape(out, [-1, 100 * 100])
vocab_size = 10000
w = tf.get_variable('w', [100*100, vocab_size], initializer=init)
b = tf.Variable(tf.zeros([vocab_size])) # biases
return tf.matmul(output, w) + b


When given some input, I do a forward pass by calling conv1d_layer. Then when I compute the gradient as follows, that's when the error happens.



output = forward(input)
loss = tf.nn.softmax_cross_entropy_with_logits_v2(logits=output, labels=classes)
optimizer = tf.train.AdamOptimizer(lr, beta1=0.5)
grads = optimizer.compute_gradients(loss)


I suspect my filters are wrong (I want to get a final shape of [100, 100, vocab_size] where vocab_size = 10000 as per above. Any help would be highly appreciated.










share|improve this question














I am having the following error when computing the gradient.



ValueError: Incompatible shapes between op input and calculated input gradient. Forward operation: write_8/conv1d_transpose. Input index: 2. Original input shape: (100, 1, 10, 10, 100). Calculated input gradient shape: (100, 1, 13, 10)



def conv1d_layer(inp, filters, stride, output_shape=None, transpose=False):
if output_shape is not None:
output_shape = tf.constant(output_shape)
if transpose: return tf.contrib.nn.conv1d_transpose(inp,
filters, output_shape, stride, padding='SAME')
return tf.nn.conv1d(inp, filters, stride, 'SAME')

def forward(input, batch_size=100):
output = tf.reshape(output, [-1, 10, 10, 100])
init = tf.truncated_normal_initializer(stddev=1.)
filter = tf.get_variable('f1', [5, 1, 10], initializer=init)
output = conv1d_layer(output, filter, 2, [batch_size, 25, 25], True)
filter = tf.get_variable('f2', [5, 1, 25], initializer=init)
output = conv1d_layer(output, filter, 2, [batch_size, 50, 50], True)
filter = tf.get_variable('f3', [5, 1, 50], initializer=init)
out = conv1d_layer(output, filter, 2, [batch_size, 100, 100], True)
out = tf.reshape(out, [-1, 100 * 100])
vocab_size = 10000
w = tf.get_variable('w', [100*100, vocab_size], initializer=init)
b = tf.Variable(tf.zeros([vocab_size])) # biases
return tf.matmul(output, w) + b


When given some input, I do a forward pass by calling conv1d_layer. Then when I compute the gradient as follows, that's when the error happens.



output = forward(input)
loss = tf.nn.softmax_cross_entropy_with_logits_v2(logits=output, labels=classes)
optimizer = tf.train.AdamOptimizer(lr, beta1=0.5)
grads = optimizer.compute_gradients(loss)


I suspect my filters are wrong (I want to get a final shape of [100, 100, vocab_size] where vocab_size = 10000 as per above. Any help would be highly appreciated.







filter gradient transpose convolution






share|improve this question













share|improve this question











share|improve this question




share|improve this question










asked Nov 24 '18 at 17:49









NoorNoor

114




114













  • I meant input in the forward method instead of output, and return tf.matmul(out, w) + b

    – Noor
    Nov 24 '18 at 17:51





















  • I meant input in the forward method instead of output, and return tf.matmul(out, w) + b

    – Noor
    Nov 24 '18 at 17:51



















I meant input in the forward method instead of output, and return tf.matmul(out, w) + b

– Noor
Nov 24 '18 at 17:51







I meant input in the forward method instead of output, and return tf.matmul(out, w) + b

– Noor
Nov 24 '18 at 17:51














0






active

oldest

votes











Your Answer






StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53460868%2fincompatible-shapes-between-op-input-and-calculated-input-gradient-conv1d-trans%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Stack Overflow!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53460868%2fincompatible-shapes-between-op-input-and-calculated-input-gradient-conv1d-trans%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

A CLEAN and SIMPLE way to add appendices to Table of Contents and bookmarks

Calculate evaluation metrics using cross_val_predict sklearn

Insert data from modal to MySQL (multiple modal on website)