Predefinição:Legenda dos resultados da Superleague Formula

Multi tool use
Cor |
Resultado
|
Dourado |
Vencedor
|
Prateado |
2º lugar
|
Bronze |
3º lugar
|
Verde |
Terminou nos pontos
|
Roxo |
Não terminou
|
Preto |
Desqualificado (DQ)
|
Branco |
Não começou (NC)
|
Abandonou (NA)
|
Verde Marinho |
Piloto não participou / participou a pilotar para outro clube
|
Púrpura |
Clube não participou
|
Salmão |
Operado por outra equipa de automobilismo
|
Castanho Claro |
Não se apurou/Não participou na 3ª Corrida
|
Amarelo |
Não houve 3ª Corrida
|
Negrito – Pole position
Itálico – Volta mais rápida
Código-fonte das cores
Cor |
Resultado
|
Dourado |
#ffffbf
|
Prateado |
#dfdfdf
|
Bronze |
#ffdf9f
|
Verde |
#dfffdf
|
Roxo |
#efcfff
|
Preto |
#000000
|
Branco |
#ffffff
|
Verde Marinho |
#C1FFC1
|
Púrpura |
#FF99FF
|
Salmão |
#FF6347
|
Castanho Claro |
#F4A460
|
Amarelo |
#FFFF33
|
1KBNKSd6xffdUp,oKORfZuIYl,u0NiTAG1HBwx6oqAxI8S83wjBIqd9Za AoCNQyBeaJ 4lx pmc9xnM2b
Popular posts from this blog
0
I found a lot of questions abount appendices and ToC. Many users want appendices to be grouped in an Appendix part, however some problems arise with ToC, hyperref, PDF viewer bookmarks, and so on. There are different solutions which require extra packages, command patching and other extra code, however none of them satisfies me. I almost found an easy way to accomplish a good result, where appendices are added to bookmarks in the right way and hyperref links point to the right page. However, the number of the "Appendix" part page is wrong (it's the number of appendix A). Is there any EASY way to fix that? This is a MWE: documentclass{book} usepackage[nottoc,notlot,notlof]{tocbibind} usepackage{hyperref} begin{document} frontmatter tableofcontents mainmatter part{First} chapter{...
1
In the sklearn.model_selection.cross_val_predict page it is stated: Generate cross-validated estimates for each input data point. It is not appropriate to pass these predictions into an evaluation metric. Can someone explain what does it mean? If this gives estimate of Y (y prediction) for every Y (true Y), why can't I calculate metrics such as RMSE or coefficient of determination using these results?
python scikit-learn cross-validation
share | improve this question
edited Nov 28 '18 at 17:52
desertnaut
20.3k 7 43 79
...
.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty{ height:90px;width:728px;box-sizing:border-box;
}
0
I have written a function using curl to generate the token. I check whether the token exists; if not, then I execute the function, otherwise I skip this function and proceed to next. But I am not sure that it will work if a token is expired. Is there any command to identify the expired token and generates the new one by calling this function? #!/bin/ksh export V_TOKEN="gen_token_${V_DATE}.txt" #### Calling function to generate the token function callPOST { curl -X POST -H 'Content-Type: application/x-www-form-url' -d 'grant_type=password&username=usr01&password=pwd...