Problem using Simpson's integration rule in GAMS











up vote
1
down vote

favorite












I have made a simple code using GAMS which determines the maximum reach of a glider using trapeziod integration. I want to recreate the same program with SImpson's integration, however, I cannot understand the results.



This is the functional code with the trapezoid rule:



$set n 50
set j /0*%n%/;
sets
jlast(j)
jnotlast(j);
jlast(j)$(ord(j)=card(j))=yes;
jnotlast(j)=not jlast(j);
scalar
n number of intervals /%n%/
m mass /5000/
S surface /21.55/
CD0 drag /0.023/
k ni idea /0.073/
hmax initial height /1000/
g gravity /9.81/

density density /1.225/
variable
gamma(j),
CL(j),
D(j),
CD(j),
L(j),
*x(j),
*y(j),
objective;

positive variable

x(j),
y(j),
v(j),

step;

equation
diffx(j),
diffy(j),
valueD(j),
valueL(j),
obj;

diffx[j]$(jnotlast(j)).. x[j+1]-x[j] =e=0.5*step*(v(j+1)*cos(gamma(j+1)) + v(j)*cos(gamma(j)) );
diffy[j]$(jnotlast(j)).. y[j+1]-y[j] =e=0.5*step*(v(j+1)*sin(gamma(j+1)) + v(j)*sin(gamma(j)) );

valueD[j].. m*g*sin(gamma(j))=e=0.5*density*S*v(j)*v(j)*(CD0+k*CL(j)*CL(j));
valueL[j].. m*g*cos(gamma(j))=e=0.5*density*S*v(j)*v(j)*CL(j);

obj .. objective =e= x('%n%');





x.fx('0') = 1.0e-12;
y.fx('0') = 1000;
y.fx('%n%') = 1.0e-12;

CL.up(j) =1.4;

y.up (j) = 1000;

gamma.up(j) = pi*0.5;


v.lo(j) = 1.0e-12;


y.lo(j) = 1.0e-12;


CL.lo(j) = 0;

gamma.lo(j) = 0;



model brahstron1 /all/;

option
nlp=ipopt;
solve brahstron1 using nlp maximize objective;


And this is the defective one using Simpson:



$set n 50
set j /0*%n%/;
sets
jlast(j)
jnotlast(j);
jlast(j)$(ord(j)=card(j))=yes;
jnotlast(j)=not jlast(j);
scalar
n number of intervals /%n%/
m mass /5000/
S surface /21.55/
CD0 drag /0.023/
k ni idea /0.073/
hmax initial height /1000/
g gravity /9.81/

density density /1.225/
variable
gamma(j),
CL(j),
D(j),
CD(j),
L(j),

gamma_med(j),
CL_med(j),
D_med(j),
CD_med(j),
L_med(j),

objective;

positive variable

x(j),
y(j),
v(j),

x_med(j),
y_med(j),
v_med(j),

step;

equation
diffx(j),
diffy(j),
diffx_central(j),
diffy_central(j),
valueD(j),
valueL(j),
valueD_central(j),
valueL_central(j),
obj;


diffx[j]$(jnotlast(j)).. x[j+1]-x[j] =e=(1/6)*step*(v(j+1)*cos(gamma(j+1)) + v(j)*cos(gamma(j)) + 4*v_med(j+1)*cos(gamma_med(j+1)) );
diffy[j]$(jnotlast(j)).. y[j+1]-y[j] =e=(1/6)*step*(v(j+1)*sin(gamma(j+1)) + v(j)*sin(gamma(j)) + 4*v_med(j+1)*sin(gamma_med(j+1)) );

diffx_central[j]$(jnotlast(j)).. x_med[j+1] =e=0.5*(x(j+1)+x(j));
diffy_central[j]$(jnotlast(j)).. y_med[j+1] =e=0.5*(y(j+1)+y(j));


valueD[j].. m*g*sin(gamma(j))=e=0.5*density*S*v(j)*v(j)*(CD0+k*CL(j)*CL(j));
valueL[j].. m*g*cos(gamma(j))=e=0.5*density*S*v(j)*v(j)*CL(j);

valueD_central[j].. m*g*sin(gamma_med(j))=e=0.5*density*S*v_med(j)*v_med(j)*(CD0+k*CL_med(j)*CL_med(j));
valueL_central[j].. m*g*cos(gamma_med(j))=e=0.5*density*S*v_med(j)*v_med(j)*CL_med(j);

obj .. objective =e= x('%n%');




x.fx('0') = 1.0e-12;
y.fx('0') = 1000;
y.fx('%n%') = 1.0e-12;

CL.up(j) =1.4;
CL_med.up(j) =1.4;

y.up (j) = 1000;
y_med.up (j) = 1000;

gamma.up(j) = pi*0.5;
gamma_med.up(j) = pi*0.5;

v.lo(j) = 1.0e-12;
v_med.lo(j) = 1.0e-12;

y.lo(j) = 1.0e-12;
y_med.lo(j) = 1.0e-12;


CL.lo(j) = 0;
CL_med.lo(j) =0;

gamma.lo(j) = 0;
gamma_med.lo(j) = 0;


model brahstron1 /all/;
* Invoke the LGO solver option for solving this nonlinear programming
option
nlp=ipopt;
solve brahstron1 using nlp maximize objective;


What I did was to follow the book



Practical Methods for Optimal Control and Estimation Using Nonlinear Programming between pages 141 and 142. Since my control is unknown the y_hat are simply the average of the sum of y_k+1 and y_k, then, I defined the variables D and L at these points and then calculated y_k+1 - y_k how it is sugested in page 141.



However, instead of seeing the variables displayed as in the first code, now I see some kind of weird loop. This is my propper answer with trapezoid rule
and this is my defective solution with Simpson's method.



All recomendations on where my error or errors are are extremely welcome.
Thanks for reading.










share|improve this question


























    up vote
    1
    down vote

    favorite












    I have made a simple code using GAMS which determines the maximum reach of a glider using trapeziod integration. I want to recreate the same program with SImpson's integration, however, I cannot understand the results.



    This is the functional code with the trapezoid rule:



    $set n 50
    set j /0*%n%/;
    sets
    jlast(j)
    jnotlast(j);
    jlast(j)$(ord(j)=card(j))=yes;
    jnotlast(j)=not jlast(j);
    scalar
    n number of intervals /%n%/
    m mass /5000/
    S surface /21.55/
    CD0 drag /0.023/
    k ni idea /0.073/
    hmax initial height /1000/
    g gravity /9.81/

    density density /1.225/
    variable
    gamma(j),
    CL(j),
    D(j),
    CD(j),
    L(j),
    *x(j),
    *y(j),
    objective;

    positive variable

    x(j),
    y(j),
    v(j),

    step;

    equation
    diffx(j),
    diffy(j),
    valueD(j),
    valueL(j),
    obj;

    diffx[j]$(jnotlast(j)).. x[j+1]-x[j] =e=0.5*step*(v(j+1)*cos(gamma(j+1)) + v(j)*cos(gamma(j)) );
    diffy[j]$(jnotlast(j)).. y[j+1]-y[j] =e=0.5*step*(v(j+1)*sin(gamma(j+1)) + v(j)*sin(gamma(j)) );

    valueD[j].. m*g*sin(gamma(j))=e=0.5*density*S*v(j)*v(j)*(CD0+k*CL(j)*CL(j));
    valueL[j].. m*g*cos(gamma(j))=e=0.5*density*S*v(j)*v(j)*CL(j);

    obj .. objective =e= x('%n%');





    x.fx('0') = 1.0e-12;
    y.fx('0') = 1000;
    y.fx('%n%') = 1.0e-12;

    CL.up(j) =1.4;

    y.up (j) = 1000;

    gamma.up(j) = pi*0.5;


    v.lo(j) = 1.0e-12;


    y.lo(j) = 1.0e-12;


    CL.lo(j) = 0;

    gamma.lo(j) = 0;



    model brahstron1 /all/;

    option
    nlp=ipopt;
    solve brahstron1 using nlp maximize objective;


    And this is the defective one using Simpson:



    $set n 50
    set j /0*%n%/;
    sets
    jlast(j)
    jnotlast(j);
    jlast(j)$(ord(j)=card(j))=yes;
    jnotlast(j)=not jlast(j);
    scalar
    n number of intervals /%n%/
    m mass /5000/
    S surface /21.55/
    CD0 drag /0.023/
    k ni idea /0.073/
    hmax initial height /1000/
    g gravity /9.81/

    density density /1.225/
    variable
    gamma(j),
    CL(j),
    D(j),
    CD(j),
    L(j),

    gamma_med(j),
    CL_med(j),
    D_med(j),
    CD_med(j),
    L_med(j),

    objective;

    positive variable

    x(j),
    y(j),
    v(j),

    x_med(j),
    y_med(j),
    v_med(j),

    step;

    equation
    diffx(j),
    diffy(j),
    diffx_central(j),
    diffy_central(j),
    valueD(j),
    valueL(j),
    valueD_central(j),
    valueL_central(j),
    obj;


    diffx[j]$(jnotlast(j)).. x[j+1]-x[j] =e=(1/6)*step*(v(j+1)*cos(gamma(j+1)) + v(j)*cos(gamma(j)) + 4*v_med(j+1)*cos(gamma_med(j+1)) );
    diffy[j]$(jnotlast(j)).. y[j+1]-y[j] =e=(1/6)*step*(v(j+1)*sin(gamma(j+1)) + v(j)*sin(gamma(j)) + 4*v_med(j+1)*sin(gamma_med(j+1)) );

    diffx_central[j]$(jnotlast(j)).. x_med[j+1] =e=0.5*(x(j+1)+x(j));
    diffy_central[j]$(jnotlast(j)).. y_med[j+1] =e=0.5*(y(j+1)+y(j));


    valueD[j].. m*g*sin(gamma(j))=e=0.5*density*S*v(j)*v(j)*(CD0+k*CL(j)*CL(j));
    valueL[j].. m*g*cos(gamma(j))=e=0.5*density*S*v(j)*v(j)*CL(j);

    valueD_central[j].. m*g*sin(gamma_med(j))=e=0.5*density*S*v_med(j)*v_med(j)*(CD0+k*CL_med(j)*CL_med(j));
    valueL_central[j].. m*g*cos(gamma_med(j))=e=0.5*density*S*v_med(j)*v_med(j)*CL_med(j);

    obj .. objective =e= x('%n%');




    x.fx('0') = 1.0e-12;
    y.fx('0') = 1000;
    y.fx('%n%') = 1.0e-12;

    CL.up(j) =1.4;
    CL_med.up(j) =1.4;

    y.up (j) = 1000;
    y_med.up (j) = 1000;

    gamma.up(j) = pi*0.5;
    gamma_med.up(j) = pi*0.5;

    v.lo(j) = 1.0e-12;
    v_med.lo(j) = 1.0e-12;

    y.lo(j) = 1.0e-12;
    y_med.lo(j) = 1.0e-12;


    CL.lo(j) = 0;
    CL_med.lo(j) =0;

    gamma.lo(j) = 0;
    gamma_med.lo(j) = 0;


    model brahstron1 /all/;
    * Invoke the LGO solver option for solving this nonlinear programming
    option
    nlp=ipopt;
    solve brahstron1 using nlp maximize objective;


    What I did was to follow the book



    Practical Methods for Optimal Control and Estimation Using Nonlinear Programming between pages 141 and 142. Since my control is unknown the y_hat are simply the average of the sum of y_k+1 and y_k, then, I defined the variables D and L at these points and then calculated y_k+1 - y_k how it is sugested in page 141.



    However, instead of seeing the variables displayed as in the first code, now I see some kind of weird loop. This is my propper answer with trapezoid rule
    and this is my defective solution with Simpson's method.



    All recomendations on where my error or errors are are extremely welcome.
    Thanks for reading.










    share|improve this question
























      up vote
      1
      down vote

      favorite









      up vote
      1
      down vote

      favorite











      I have made a simple code using GAMS which determines the maximum reach of a glider using trapeziod integration. I want to recreate the same program with SImpson's integration, however, I cannot understand the results.



      This is the functional code with the trapezoid rule:



      $set n 50
      set j /0*%n%/;
      sets
      jlast(j)
      jnotlast(j);
      jlast(j)$(ord(j)=card(j))=yes;
      jnotlast(j)=not jlast(j);
      scalar
      n number of intervals /%n%/
      m mass /5000/
      S surface /21.55/
      CD0 drag /0.023/
      k ni idea /0.073/
      hmax initial height /1000/
      g gravity /9.81/

      density density /1.225/
      variable
      gamma(j),
      CL(j),
      D(j),
      CD(j),
      L(j),
      *x(j),
      *y(j),
      objective;

      positive variable

      x(j),
      y(j),
      v(j),

      step;

      equation
      diffx(j),
      diffy(j),
      valueD(j),
      valueL(j),
      obj;

      diffx[j]$(jnotlast(j)).. x[j+1]-x[j] =e=0.5*step*(v(j+1)*cos(gamma(j+1)) + v(j)*cos(gamma(j)) );
      diffy[j]$(jnotlast(j)).. y[j+1]-y[j] =e=0.5*step*(v(j+1)*sin(gamma(j+1)) + v(j)*sin(gamma(j)) );

      valueD[j].. m*g*sin(gamma(j))=e=0.5*density*S*v(j)*v(j)*(CD0+k*CL(j)*CL(j));
      valueL[j].. m*g*cos(gamma(j))=e=0.5*density*S*v(j)*v(j)*CL(j);

      obj .. objective =e= x('%n%');





      x.fx('0') = 1.0e-12;
      y.fx('0') = 1000;
      y.fx('%n%') = 1.0e-12;

      CL.up(j) =1.4;

      y.up (j) = 1000;

      gamma.up(j) = pi*0.5;


      v.lo(j) = 1.0e-12;


      y.lo(j) = 1.0e-12;


      CL.lo(j) = 0;

      gamma.lo(j) = 0;



      model brahstron1 /all/;

      option
      nlp=ipopt;
      solve brahstron1 using nlp maximize objective;


      And this is the defective one using Simpson:



      $set n 50
      set j /0*%n%/;
      sets
      jlast(j)
      jnotlast(j);
      jlast(j)$(ord(j)=card(j))=yes;
      jnotlast(j)=not jlast(j);
      scalar
      n number of intervals /%n%/
      m mass /5000/
      S surface /21.55/
      CD0 drag /0.023/
      k ni idea /0.073/
      hmax initial height /1000/
      g gravity /9.81/

      density density /1.225/
      variable
      gamma(j),
      CL(j),
      D(j),
      CD(j),
      L(j),

      gamma_med(j),
      CL_med(j),
      D_med(j),
      CD_med(j),
      L_med(j),

      objective;

      positive variable

      x(j),
      y(j),
      v(j),

      x_med(j),
      y_med(j),
      v_med(j),

      step;

      equation
      diffx(j),
      diffy(j),
      diffx_central(j),
      diffy_central(j),
      valueD(j),
      valueL(j),
      valueD_central(j),
      valueL_central(j),
      obj;


      diffx[j]$(jnotlast(j)).. x[j+1]-x[j] =e=(1/6)*step*(v(j+1)*cos(gamma(j+1)) + v(j)*cos(gamma(j)) + 4*v_med(j+1)*cos(gamma_med(j+1)) );
      diffy[j]$(jnotlast(j)).. y[j+1]-y[j] =e=(1/6)*step*(v(j+1)*sin(gamma(j+1)) + v(j)*sin(gamma(j)) + 4*v_med(j+1)*sin(gamma_med(j+1)) );

      diffx_central[j]$(jnotlast(j)).. x_med[j+1] =e=0.5*(x(j+1)+x(j));
      diffy_central[j]$(jnotlast(j)).. y_med[j+1] =e=0.5*(y(j+1)+y(j));


      valueD[j].. m*g*sin(gamma(j))=e=0.5*density*S*v(j)*v(j)*(CD0+k*CL(j)*CL(j));
      valueL[j].. m*g*cos(gamma(j))=e=0.5*density*S*v(j)*v(j)*CL(j);

      valueD_central[j].. m*g*sin(gamma_med(j))=e=0.5*density*S*v_med(j)*v_med(j)*(CD0+k*CL_med(j)*CL_med(j));
      valueL_central[j].. m*g*cos(gamma_med(j))=e=0.5*density*S*v_med(j)*v_med(j)*CL_med(j);

      obj .. objective =e= x('%n%');




      x.fx('0') = 1.0e-12;
      y.fx('0') = 1000;
      y.fx('%n%') = 1.0e-12;

      CL.up(j) =1.4;
      CL_med.up(j) =1.4;

      y.up (j) = 1000;
      y_med.up (j) = 1000;

      gamma.up(j) = pi*0.5;
      gamma_med.up(j) = pi*0.5;

      v.lo(j) = 1.0e-12;
      v_med.lo(j) = 1.0e-12;

      y.lo(j) = 1.0e-12;
      y_med.lo(j) = 1.0e-12;


      CL.lo(j) = 0;
      CL_med.lo(j) =0;

      gamma.lo(j) = 0;
      gamma_med.lo(j) = 0;


      model brahstron1 /all/;
      * Invoke the LGO solver option for solving this nonlinear programming
      option
      nlp=ipopt;
      solve brahstron1 using nlp maximize objective;


      What I did was to follow the book



      Practical Methods for Optimal Control and Estimation Using Nonlinear Programming between pages 141 and 142. Since my control is unknown the y_hat are simply the average of the sum of y_k+1 and y_k, then, I defined the variables D and L at these points and then calculated y_k+1 - y_k how it is sugested in page 141.



      However, instead of seeing the variables displayed as in the first code, now I see some kind of weird loop. This is my propper answer with trapezoid rule
      and this is my defective solution with Simpson's method.



      All recomendations on where my error or errors are are extremely welcome.
      Thanks for reading.










      share|improve this question













      I have made a simple code using GAMS which determines the maximum reach of a glider using trapeziod integration. I want to recreate the same program with SImpson's integration, however, I cannot understand the results.



      This is the functional code with the trapezoid rule:



      $set n 50
      set j /0*%n%/;
      sets
      jlast(j)
      jnotlast(j);
      jlast(j)$(ord(j)=card(j))=yes;
      jnotlast(j)=not jlast(j);
      scalar
      n number of intervals /%n%/
      m mass /5000/
      S surface /21.55/
      CD0 drag /0.023/
      k ni idea /0.073/
      hmax initial height /1000/
      g gravity /9.81/

      density density /1.225/
      variable
      gamma(j),
      CL(j),
      D(j),
      CD(j),
      L(j),
      *x(j),
      *y(j),
      objective;

      positive variable

      x(j),
      y(j),
      v(j),

      step;

      equation
      diffx(j),
      diffy(j),
      valueD(j),
      valueL(j),
      obj;

      diffx[j]$(jnotlast(j)).. x[j+1]-x[j] =e=0.5*step*(v(j+1)*cos(gamma(j+1)) + v(j)*cos(gamma(j)) );
      diffy[j]$(jnotlast(j)).. y[j+1]-y[j] =e=0.5*step*(v(j+1)*sin(gamma(j+1)) + v(j)*sin(gamma(j)) );

      valueD[j].. m*g*sin(gamma(j))=e=0.5*density*S*v(j)*v(j)*(CD0+k*CL(j)*CL(j));
      valueL[j].. m*g*cos(gamma(j))=e=0.5*density*S*v(j)*v(j)*CL(j);

      obj .. objective =e= x('%n%');





      x.fx('0') = 1.0e-12;
      y.fx('0') = 1000;
      y.fx('%n%') = 1.0e-12;

      CL.up(j) =1.4;

      y.up (j) = 1000;

      gamma.up(j) = pi*0.5;


      v.lo(j) = 1.0e-12;


      y.lo(j) = 1.0e-12;


      CL.lo(j) = 0;

      gamma.lo(j) = 0;



      model brahstron1 /all/;

      option
      nlp=ipopt;
      solve brahstron1 using nlp maximize objective;


      And this is the defective one using Simpson:



      $set n 50
      set j /0*%n%/;
      sets
      jlast(j)
      jnotlast(j);
      jlast(j)$(ord(j)=card(j))=yes;
      jnotlast(j)=not jlast(j);
      scalar
      n number of intervals /%n%/
      m mass /5000/
      S surface /21.55/
      CD0 drag /0.023/
      k ni idea /0.073/
      hmax initial height /1000/
      g gravity /9.81/

      density density /1.225/
      variable
      gamma(j),
      CL(j),
      D(j),
      CD(j),
      L(j),

      gamma_med(j),
      CL_med(j),
      D_med(j),
      CD_med(j),
      L_med(j),

      objective;

      positive variable

      x(j),
      y(j),
      v(j),

      x_med(j),
      y_med(j),
      v_med(j),

      step;

      equation
      diffx(j),
      diffy(j),
      diffx_central(j),
      diffy_central(j),
      valueD(j),
      valueL(j),
      valueD_central(j),
      valueL_central(j),
      obj;


      diffx[j]$(jnotlast(j)).. x[j+1]-x[j] =e=(1/6)*step*(v(j+1)*cos(gamma(j+1)) + v(j)*cos(gamma(j)) + 4*v_med(j+1)*cos(gamma_med(j+1)) );
      diffy[j]$(jnotlast(j)).. y[j+1]-y[j] =e=(1/6)*step*(v(j+1)*sin(gamma(j+1)) + v(j)*sin(gamma(j)) + 4*v_med(j+1)*sin(gamma_med(j+1)) );

      diffx_central[j]$(jnotlast(j)).. x_med[j+1] =e=0.5*(x(j+1)+x(j));
      diffy_central[j]$(jnotlast(j)).. y_med[j+1] =e=0.5*(y(j+1)+y(j));


      valueD[j].. m*g*sin(gamma(j))=e=0.5*density*S*v(j)*v(j)*(CD0+k*CL(j)*CL(j));
      valueL[j].. m*g*cos(gamma(j))=e=0.5*density*S*v(j)*v(j)*CL(j);

      valueD_central[j].. m*g*sin(gamma_med(j))=e=0.5*density*S*v_med(j)*v_med(j)*(CD0+k*CL_med(j)*CL_med(j));
      valueL_central[j].. m*g*cos(gamma_med(j))=e=0.5*density*S*v_med(j)*v_med(j)*CL_med(j);

      obj .. objective =e= x('%n%');




      x.fx('0') = 1.0e-12;
      y.fx('0') = 1000;
      y.fx('%n%') = 1.0e-12;

      CL.up(j) =1.4;
      CL_med.up(j) =1.4;

      y.up (j) = 1000;
      y_med.up (j) = 1000;

      gamma.up(j) = pi*0.5;
      gamma_med.up(j) = pi*0.5;

      v.lo(j) = 1.0e-12;
      v_med.lo(j) = 1.0e-12;

      y.lo(j) = 1.0e-12;
      y_med.lo(j) = 1.0e-12;


      CL.lo(j) = 0;
      CL_med.lo(j) =0;

      gamma.lo(j) = 0;
      gamma_med.lo(j) = 0;


      model brahstron1 /all/;
      * Invoke the LGO solver option for solving this nonlinear programming
      option
      nlp=ipopt;
      solve brahstron1 using nlp maximize objective;


      What I did was to follow the book



      Practical Methods for Optimal Control and Estimation Using Nonlinear Programming between pages 141 and 142. Since my control is unknown the y_hat are simply the average of the sum of y_k+1 and y_k, then, I defined the variables D and L at these points and then calculated y_k+1 - y_k how it is sugested in page 141.



      However, instead of seeing the variables displayed as in the first code, now I see some kind of weird loop. This is my propper answer with trapezoid rule
      and this is my defective solution with Simpson's method.



      All recomendations on where my error or errors are are extremely welcome.
      Thanks for reading.







      gams-math simpsons-rule






      share|improve this question













      share|improve this question











      share|improve this question




      share|improve this question










      asked Nov 22 at 10:32









      slow_learner

      64




      64
























          1 Answer
          1






          active

          oldest

          votes

















          up vote
          0
          down vote













          After triyng for some time, I have found out that it is a licence problem what is causing these issues. A simple change in the code enables it to work as it should.



          $set n 10
          set j /0*%n%/;
          sets
          jlast(j)
          jnotlast(j);
          jlast(j)$(ord(j)=card(j))=yes;
          jnotlast(j)=not jlast(j);
          scalar
          n number of intervals /%n%/
          m mass /5000/
          S surface /21.55/
          CD0 drag /0.023/
          k ni idea /0.073/
          hmax initial height /1000/
          g gravity /9.81/

          density density /1.225/
          variable
          gamma(j),
          CL(j),
          D(j),
          CD(j),
          L(j),

          gamma_med(j),
          CL_med(j),
          D_med(j),
          CD_med(j),
          L_med(j),

          objective;

          positive variable

          x(j),
          y(j),
          v(j),

          x_med(j),
          y_med(j),
          v_med(j),

          step;

          equation
          diffx(j),
          diffy(j),
          diffx_central(j),
          diffy_central(j),
          valueD(j),
          valueL(j),
          valueD_central(j),
          valueL_central(j),
          obj;


          diffx[j]$(jnotlast(j)).. x[j+1]-x[j] =e=(1/6)*step*(v(j+1)*cos(gamma(j+1)) + v(j)*cos(gamma(j)) + 4*v_med(j+1)*cos(gamma_med(j+1)) );
          diffy[j]$(jnotlast(j)).. y[j+1]-y[j] =e=(-1)* (1/6)*step*(v(j+1)*sin(gamma(j+1)) + v(j)*sin(gamma(j)) + 4*v_med(j+1)*sin(gamma_med(j+1)) );

          diffx_central[j]$(jnotlast(j)).. x_med[j+1] =e=0.5*(x(j+1)+x(j)+(step/8)*(v_med(j)*cos(gamma_med(j)))-(v_med(j+1)*cos(gamma_med(j+1))));
          diffy_central[j]$(jnotlast(j)).. y_med[j+1] =e=0.5*(y(j+1)+y(j)+(step/8)*(v_med(j)*sin(gamma_med(j)))-(v_med(j+1)*sin(gamma_med(j+1))));


          valueD[j].. m*g*sin(gamma(j))=e=0.5*density*S*v(j)*v(j)*(CD0+k*CL(j)*CL(j));
          valueL[j].. m*g*cos(gamma(j))=e=0.5*density*S*v(j)*v(j)*CL(j);

          valueD_central[j].. m*g*sin(gamma_med(j))=e=0.5*density*S*v_med(j)*v_med(j)*(CD0+k*CL_med(j)*CL_med(j));
          valueL_central[j].. m*g*cos(gamma_med(j))=e=0.5*density*S*v_med(j)*v_med(j)*CL_med(j);

          obj .. objective =e= x('%n%');




          x.fx('0') = 1.0e-12;
          y.fx('0') = 1000;
          y.fx('%n%') = 1.0e-12;

          CL.up(j) =1.4;
          CL_med.up(j) =1.4;

          y.up (j) = 1000;
          y_med.up (j) = 1000;

          gamma.up(j) = pi*0.5;
          gamma_med.up(j) = pi*0.5;

          gamma.lo(j) = 0;
          gamma_med.lo(j) = 0;

          v.lo(j) = 1.0e-12;
          v_med.lo(j) = 1.0e-12;

          y.lo(j) = 1.0e-12;
          y_med.lo(j) = 1.0e-12;


          CL.lo(j) = 0;
          CL_med.lo(j) =0;

          gamma.lo(j) = 0;
          gamma_med.lo(j) = 0;


          model brahstron1 /all/;
          * Invoke the LGO solver option for solving this nonlinear programming
          option
          nlp=ipopt;
          solve brahstron1 using nlp maximize objective;





          share|improve this answer





















            Your Answer






            StackExchange.ifUsing("editor", function () {
            StackExchange.using("externalEditor", function () {
            StackExchange.using("snippets", function () {
            StackExchange.snippets.init();
            });
            });
            }, "code-snippets");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "1"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53428949%2fproblem-using-simpsons-integration-rule-in-gams%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes








            up vote
            0
            down vote













            After triyng for some time, I have found out that it is a licence problem what is causing these issues. A simple change in the code enables it to work as it should.



            $set n 10
            set j /0*%n%/;
            sets
            jlast(j)
            jnotlast(j);
            jlast(j)$(ord(j)=card(j))=yes;
            jnotlast(j)=not jlast(j);
            scalar
            n number of intervals /%n%/
            m mass /5000/
            S surface /21.55/
            CD0 drag /0.023/
            k ni idea /0.073/
            hmax initial height /1000/
            g gravity /9.81/

            density density /1.225/
            variable
            gamma(j),
            CL(j),
            D(j),
            CD(j),
            L(j),

            gamma_med(j),
            CL_med(j),
            D_med(j),
            CD_med(j),
            L_med(j),

            objective;

            positive variable

            x(j),
            y(j),
            v(j),

            x_med(j),
            y_med(j),
            v_med(j),

            step;

            equation
            diffx(j),
            diffy(j),
            diffx_central(j),
            diffy_central(j),
            valueD(j),
            valueL(j),
            valueD_central(j),
            valueL_central(j),
            obj;


            diffx[j]$(jnotlast(j)).. x[j+1]-x[j] =e=(1/6)*step*(v(j+1)*cos(gamma(j+1)) + v(j)*cos(gamma(j)) + 4*v_med(j+1)*cos(gamma_med(j+1)) );
            diffy[j]$(jnotlast(j)).. y[j+1]-y[j] =e=(-1)* (1/6)*step*(v(j+1)*sin(gamma(j+1)) + v(j)*sin(gamma(j)) + 4*v_med(j+1)*sin(gamma_med(j+1)) );

            diffx_central[j]$(jnotlast(j)).. x_med[j+1] =e=0.5*(x(j+1)+x(j)+(step/8)*(v_med(j)*cos(gamma_med(j)))-(v_med(j+1)*cos(gamma_med(j+1))));
            diffy_central[j]$(jnotlast(j)).. y_med[j+1] =e=0.5*(y(j+1)+y(j)+(step/8)*(v_med(j)*sin(gamma_med(j)))-(v_med(j+1)*sin(gamma_med(j+1))));


            valueD[j].. m*g*sin(gamma(j))=e=0.5*density*S*v(j)*v(j)*(CD0+k*CL(j)*CL(j));
            valueL[j].. m*g*cos(gamma(j))=e=0.5*density*S*v(j)*v(j)*CL(j);

            valueD_central[j].. m*g*sin(gamma_med(j))=e=0.5*density*S*v_med(j)*v_med(j)*(CD0+k*CL_med(j)*CL_med(j));
            valueL_central[j].. m*g*cos(gamma_med(j))=e=0.5*density*S*v_med(j)*v_med(j)*CL_med(j);

            obj .. objective =e= x('%n%');




            x.fx('0') = 1.0e-12;
            y.fx('0') = 1000;
            y.fx('%n%') = 1.0e-12;

            CL.up(j) =1.4;
            CL_med.up(j) =1.4;

            y.up (j) = 1000;
            y_med.up (j) = 1000;

            gamma.up(j) = pi*0.5;
            gamma_med.up(j) = pi*0.5;

            gamma.lo(j) = 0;
            gamma_med.lo(j) = 0;

            v.lo(j) = 1.0e-12;
            v_med.lo(j) = 1.0e-12;

            y.lo(j) = 1.0e-12;
            y_med.lo(j) = 1.0e-12;


            CL.lo(j) = 0;
            CL_med.lo(j) =0;

            gamma.lo(j) = 0;
            gamma_med.lo(j) = 0;


            model brahstron1 /all/;
            * Invoke the LGO solver option for solving this nonlinear programming
            option
            nlp=ipopt;
            solve brahstron1 using nlp maximize objective;





            share|improve this answer

























              up vote
              0
              down vote













              After triyng for some time, I have found out that it is a licence problem what is causing these issues. A simple change in the code enables it to work as it should.



              $set n 10
              set j /0*%n%/;
              sets
              jlast(j)
              jnotlast(j);
              jlast(j)$(ord(j)=card(j))=yes;
              jnotlast(j)=not jlast(j);
              scalar
              n number of intervals /%n%/
              m mass /5000/
              S surface /21.55/
              CD0 drag /0.023/
              k ni idea /0.073/
              hmax initial height /1000/
              g gravity /9.81/

              density density /1.225/
              variable
              gamma(j),
              CL(j),
              D(j),
              CD(j),
              L(j),

              gamma_med(j),
              CL_med(j),
              D_med(j),
              CD_med(j),
              L_med(j),

              objective;

              positive variable

              x(j),
              y(j),
              v(j),

              x_med(j),
              y_med(j),
              v_med(j),

              step;

              equation
              diffx(j),
              diffy(j),
              diffx_central(j),
              diffy_central(j),
              valueD(j),
              valueL(j),
              valueD_central(j),
              valueL_central(j),
              obj;


              diffx[j]$(jnotlast(j)).. x[j+1]-x[j] =e=(1/6)*step*(v(j+1)*cos(gamma(j+1)) + v(j)*cos(gamma(j)) + 4*v_med(j+1)*cos(gamma_med(j+1)) );
              diffy[j]$(jnotlast(j)).. y[j+1]-y[j] =e=(-1)* (1/6)*step*(v(j+1)*sin(gamma(j+1)) + v(j)*sin(gamma(j)) + 4*v_med(j+1)*sin(gamma_med(j+1)) );

              diffx_central[j]$(jnotlast(j)).. x_med[j+1] =e=0.5*(x(j+1)+x(j)+(step/8)*(v_med(j)*cos(gamma_med(j)))-(v_med(j+1)*cos(gamma_med(j+1))));
              diffy_central[j]$(jnotlast(j)).. y_med[j+1] =e=0.5*(y(j+1)+y(j)+(step/8)*(v_med(j)*sin(gamma_med(j)))-(v_med(j+1)*sin(gamma_med(j+1))));


              valueD[j].. m*g*sin(gamma(j))=e=0.5*density*S*v(j)*v(j)*(CD0+k*CL(j)*CL(j));
              valueL[j].. m*g*cos(gamma(j))=e=0.5*density*S*v(j)*v(j)*CL(j);

              valueD_central[j].. m*g*sin(gamma_med(j))=e=0.5*density*S*v_med(j)*v_med(j)*(CD0+k*CL_med(j)*CL_med(j));
              valueL_central[j].. m*g*cos(gamma_med(j))=e=0.5*density*S*v_med(j)*v_med(j)*CL_med(j);

              obj .. objective =e= x('%n%');




              x.fx('0') = 1.0e-12;
              y.fx('0') = 1000;
              y.fx('%n%') = 1.0e-12;

              CL.up(j) =1.4;
              CL_med.up(j) =1.4;

              y.up (j) = 1000;
              y_med.up (j) = 1000;

              gamma.up(j) = pi*0.5;
              gamma_med.up(j) = pi*0.5;

              gamma.lo(j) = 0;
              gamma_med.lo(j) = 0;

              v.lo(j) = 1.0e-12;
              v_med.lo(j) = 1.0e-12;

              y.lo(j) = 1.0e-12;
              y_med.lo(j) = 1.0e-12;


              CL.lo(j) = 0;
              CL_med.lo(j) =0;

              gamma.lo(j) = 0;
              gamma_med.lo(j) = 0;


              model brahstron1 /all/;
              * Invoke the LGO solver option for solving this nonlinear programming
              option
              nlp=ipopt;
              solve brahstron1 using nlp maximize objective;





              share|improve this answer























                up vote
                0
                down vote










                up vote
                0
                down vote









                After triyng for some time, I have found out that it is a licence problem what is causing these issues. A simple change in the code enables it to work as it should.



                $set n 10
                set j /0*%n%/;
                sets
                jlast(j)
                jnotlast(j);
                jlast(j)$(ord(j)=card(j))=yes;
                jnotlast(j)=not jlast(j);
                scalar
                n number of intervals /%n%/
                m mass /5000/
                S surface /21.55/
                CD0 drag /0.023/
                k ni idea /0.073/
                hmax initial height /1000/
                g gravity /9.81/

                density density /1.225/
                variable
                gamma(j),
                CL(j),
                D(j),
                CD(j),
                L(j),

                gamma_med(j),
                CL_med(j),
                D_med(j),
                CD_med(j),
                L_med(j),

                objective;

                positive variable

                x(j),
                y(j),
                v(j),

                x_med(j),
                y_med(j),
                v_med(j),

                step;

                equation
                diffx(j),
                diffy(j),
                diffx_central(j),
                diffy_central(j),
                valueD(j),
                valueL(j),
                valueD_central(j),
                valueL_central(j),
                obj;


                diffx[j]$(jnotlast(j)).. x[j+1]-x[j] =e=(1/6)*step*(v(j+1)*cos(gamma(j+1)) + v(j)*cos(gamma(j)) + 4*v_med(j+1)*cos(gamma_med(j+1)) );
                diffy[j]$(jnotlast(j)).. y[j+1]-y[j] =e=(-1)* (1/6)*step*(v(j+1)*sin(gamma(j+1)) + v(j)*sin(gamma(j)) + 4*v_med(j+1)*sin(gamma_med(j+1)) );

                diffx_central[j]$(jnotlast(j)).. x_med[j+1] =e=0.5*(x(j+1)+x(j)+(step/8)*(v_med(j)*cos(gamma_med(j)))-(v_med(j+1)*cos(gamma_med(j+1))));
                diffy_central[j]$(jnotlast(j)).. y_med[j+1] =e=0.5*(y(j+1)+y(j)+(step/8)*(v_med(j)*sin(gamma_med(j)))-(v_med(j+1)*sin(gamma_med(j+1))));


                valueD[j].. m*g*sin(gamma(j))=e=0.5*density*S*v(j)*v(j)*(CD0+k*CL(j)*CL(j));
                valueL[j].. m*g*cos(gamma(j))=e=0.5*density*S*v(j)*v(j)*CL(j);

                valueD_central[j].. m*g*sin(gamma_med(j))=e=0.5*density*S*v_med(j)*v_med(j)*(CD0+k*CL_med(j)*CL_med(j));
                valueL_central[j].. m*g*cos(gamma_med(j))=e=0.5*density*S*v_med(j)*v_med(j)*CL_med(j);

                obj .. objective =e= x('%n%');




                x.fx('0') = 1.0e-12;
                y.fx('0') = 1000;
                y.fx('%n%') = 1.0e-12;

                CL.up(j) =1.4;
                CL_med.up(j) =1.4;

                y.up (j) = 1000;
                y_med.up (j) = 1000;

                gamma.up(j) = pi*0.5;
                gamma_med.up(j) = pi*0.5;

                gamma.lo(j) = 0;
                gamma_med.lo(j) = 0;

                v.lo(j) = 1.0e-12;
                v_med.lo(j) = 1.0e-12;

                y.lo(j) = 1.0e-12;
                y_med.lo(j) = 1.0e-12;


                CL.lo(j) = 0;
                CL_med.lo(j) =0;

                gamma.lo(j) = 0;
                gamma_med.lo(j) = 0;


                model brahstron1 /all/;
                * Invoke the LGO solver option for solving this nonlinear programming
                option
                nlp=ipopt;
                solve brahstron1 using nlp maximize objective;





                share|improve this answer












                After triyng for some time, I have found out that it is a licence problem what is causing these issues. A simple change in the code enables it to work as it should.



                $set n 10
                set j /0*%n%/;
                sets
                jlast(j)
                jnotlast(j);
                jlast(j)$(ord(j)=card(j))=yes;
                jnotlast(j)=not jlast(j);
                scalar
                n number of intervals /%n%/
                m mass /5000/
                S surface /21.55/
                CD0 drag /0.023/
                k ni idea /0.073/
                hmax initial height /1000/
                g gravity /9.81/

                density density /1.225/
                variable
                gamma(j),
                CL(j),
                D(j),
                CD(j),
                L(j),

                gamma_med(j),
                CL_med(j),
                D_med(j),
                CD_med(j),
                L_med(j),

                objective;

                positive variable

                x(j),
                y(j),
                v(j),

                x_med(j),
                y_med(j),
                v_med(j),

                step;

                equation
                diffx(j),
                diffy(j),
                diffx_central(j),
                diffy_central(j),
                valueD(j),
                valueL(j),
                valueD_central(j),
                valueL_central(j),
                obj;


                diffx[j]$(jnotlast(j)).. x[j+1]-x[j] =e=(1/6)*step*(v(j+1)*cos(gamma(j+1)) + v(j)*cos(gamma(j)) + 4*v_med(j+1)*cos(gamma_med(j+1)) );
                diffy[j]$(jnotlast(j)).. y[j+1]-y[j] =e=(-1)* (1/6)*step*(v(j+1)*sin(gamma(j+1)) + v(j)*sin(gamma(j)) + 4*v_med(j+1)*sin(gamma_med(j+1)) );

                diffx_central[j]$(jnotlast(j)).. x_med[j+1] =e=0.5*(x(j+1)+x(j)+(step/8)*(v_med(j)*cos(gamma_med(j)))-(v_med(j+1)*cos(gamma_med(j+1))));
                diffy_central[j]$(jnotlast(j)).. y_med[j+1] =e=0.5*(y(j+1)+y(j)+(step/8)*(v_med(j)*sin(gamma_med(j)))-(v_med(j+1)*sin(gamma_med(j+1))));


                valueD[j].. m*g*sin(gamma(j))=e=0.5*density*S*v(j)*v(j)*(CD0+k*CL(j)*CL(j));
                valueL[j].. m*g*cos(gamma(j))=e=0.5*density*S*v(j)*v(j)*CL(j);

                valueD_central[j].. m*g*sin(gamma_med(j))=e=0.5*density*S*v_med(j)*v_med(j)*(CD0+k*CL_med(j)*CL_med(j));
                valueL_central[j].. m*g*cos(gamma_med(j))=e=0.5*density*S*v_med(j)*v_med(j)*CL_med(j);

                obj .. objective =e= x('%n%');




                x.fx('0') = 1.0e-12;
                y.fx('0') = 1000;
                y.fx('%n%') = 1.0e-12;

                CL.up(j) =1.4;
                CL_med.up(j) =1.4;

                y.up (j) = 1000;
                y_med.up (j) = 1000;

                gamma.up(j) = pi*0.5;
                gamma_med.up(j) = pi*0.5;

                gamma.lo(j) = 0;
                gamma_med.lo(j) = 0;

                v.lo(j) = 1.0e-12;
                v_med.lo(j) = 1.0e-12;

                y.lo(j) = 1.0e-12;
                y_med.lo(j) = 1.0e-12;


                CL.lo(j) = 0;
                CL_med.lo(j) =0;

                gamma.lo(j) = 0;
                gamma_med.lo(j) = 0;


                model brahstron1 /all/;
                * Invoke the LGO solver option for solving this nonlinear programming
                option
                nlp=ipopt;
                solve brahstron1 using nlp maximize objective;






                share|improve this answer












                share|improve this answer



                share|improve this answer










                answered Nov 22 at 16:24









                slow_learner

                64




                64






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Stack Overflow!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    To learn more, see our tips on writing great answers.





                    Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


                    Please pay close attention to the following guidance:


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53428949%2fproblem-using-simpsons-integration-rule-in-gams%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    A CLEAN and SIMPLE way to add appendices to Table of Contents and bookmarks

                    Calculate evaluation metrics using cross_val_predict sklearn

                    Insert data from modal to MySQL (multiple modal on website)