Automatic updating criteria for summarizing a data frame
I have a vector with a bunch of criteria that I want to use to cycle through my data frame summarizing my relevant data column.
I reproduce bellow my code, using dplyr and pipe. It works perfectly, so I'll explain my struggle bellow it.
My code:
c1 <- c(0.5,0.5,0.5,1,1,1,2,2,2,2.5,2.5,2,3,3,4,4,4.4,4.5,4.5,5,5.5,6,7,7,8,8.5,9,9.5)
c2 <- c(12,10,40,4,12,7,3,2,1,4,8,10,10,7,7,4,4,4,5,5,6,15,15,25,4,4,7,18)
c3 <- rep(c("AA","BB","CC","DD"), 7)
df <- data.frame(criteria.names = c3, criteria.data = c1, relevant.data = c2,
stringsAsFactors = FALSE)
user.criteria <- c(0,2,3,5,7,10)
summarised.data <- df %>%
group_by(criteria.names) %>%
summarise(class1 = sum(relevant.data[criteria.data >= 0 & criteria.data < 2]),
class2 = sum(relevant.data[criteria.data >= 2 & criteria.data < 3]),
class3 = sum(relevant.data[criteria.data >= 3 & criteria.data < 5]),
class4 = sum(relevant.data[criteria.data >= 5 & criteria.data < 7]),
class5 = sum(relevant.data[criteria.data >= 7 & criteria.data < 10]))
Here's my expected output:
summarised.data
# A tibble: 4 x 6
criteria.names class1 class2 class3 class4 class5
<chr> <dbl> <dbl> <dbl> <dbl> <dbl>
1 AA 24 1 14 6 4
2 BB 17 4 11 15 4
3 CC 40 11 12 0 22
4 DD 4 12 4 5 43
MY PROBLEM IS: my "user.criteria" vector, whose values I use in my summarization, is gonna come via user input, so there's no guarantee that they are actually going to provide me with the 2,3,5,7,10 values (0 is always going to be there by default) I've explicitly put in my calculations. I've tried using the apply family functions (apply, sapply, lapply, mapply) and adply (plyr package) but so far I haven't been successful in tackling this problem. I'm trying to avoid using explicit loops in R, as the actual database I'm working with is quite huge.
Bellow is an example of my faulty code:
summarised.try <- 1:(length(user.criteria)-1) %>%
adply(1,function(x){
df %>%
group_by(criteria.names) %>%
summarise(class = sum(relevant.data[criteria.data >=user.criteria[x]
& criteria.data < user.criteria[x+1]]))})
What I want is to find an elegant way to get the values my user provides me and use them to automatically calculate my summarization, without needing to manually edit my code. Tks!
r loops dataframe criteria summarization
add a comment |
I have a vector with a bunch of criteria that I want to use to cycle through my data frame summarizing my relevant data column.
I reproduce bellow my code, using dplyr and pipe. It works perfectly, so I'll explain my struggle bellow it.
My code:
c1 <- c(0.5,0.5,0.5,1,1,1,2,2,2,2.5,2.5,2,3,3,4,4,4.4,4.5,4.5,5,5.5,6,7,7,8,8.5,9,9.5)
c2 <- c(12,10,40,4,12,7,3,2,1,4,8,10,10,7,7,4,4,4,5,5,6,15,15,25,4,4,7,18)
c3 <- rep(c("AA","BB","CC","DD"), 7)
df <- data.frame(criteria.names = c3, criteria.data = c1, relevant.data = c2,
stringsAsFactors = FALSE)
user.criteria <- c(0,2,3,5,7,10)
summarised.data <- df %>%
group_by(criteria.names) %>%
summarise(class1 = sum(relevant.data[criteria.data >= 0 & criteria.data < 2]),
class2 = sum(relevant.data[criteria.data >= 2 & criteria.data < 3]),
class3 = sum(relevant.data[criteria.data >= 3 & criteria.data < 5]),
class4 = sum(relevant.data[criteria.data >= 5 & criteria.data < 7]),
class5 = sum(relevant.data[criteria.data >= 7 & criteria.data < 10]))
Here's my expected output:
summarised.data
# A tibble: 4 x 6
criteria.names class1 class2 class3 class4 class5
<chr> <dbl> <dbl> <dbl> <dbl> <dbl>
1 AA 24 1 14 6 4
2 BB 17 4 11 15 4
3 CC 40 11 12 0 22
4 DD 4 12 4 5 43
MY PROBLEM IS: my "user.criteria" vector, whose values I use in my summarization, is gonna come via user input, so there's no guarantee that they are actually going to provide me with the 2,3,5,7,10 values (0 is always going to be there by default) I've explicitly put in my calculations. I've tried using the apply family functions (apply, sapply, lapply, mapply) and adply (plyr package) but so far I haven't been successful in tackling this problem. I'm trying to avoid using explicit loops in R, as the actual database I'm working with is quite huge.
Bellow is an example of my faulty code:
summarised.try <- 1:(length(user.criteria)-1) %>%
adply(1,function(x){
df %>%
group_by(criteria.names) %>%
summarise(class = sum(relevant.data[criteria.data >=user.criteria[x]
& criteria.data < user.criteria[x+1]]))})
What I want is to find an elegant way to get the values my user provides me and use them to automatically calculate my summarization, without needing to manually edit my code. Tks!
r loops dataframe criteria summarization
add a comment |
I have a vector with a bunch of criteria that I want to use to cycle through my data frame summarizing my relevant data column.
I reproduce bellow my code, using dplyr and pipe. It works perfectly, so I'll explain my struggle bellow it.
My code:
c1 <- c(0.5,0.5,0.5,1,1,1,2,2,2,2.5,2.5,2,3,3,4,4,4.4,4.5,4.5,5,5.5,6,7,7,8,8.5,9,9.5)
c2 <- c(12,10,40,4,12,7,3,2,1,4,8,10,10,7,7,4,4,4,5,5,6,15,15,25,4,4,7,18)
c3 <- rep(c("AA","BB","CC","DD"), 7)
df <- data.frame(criteria.names = c3, criteria.data = c1, relevant.data = c2,
stringsAsFactors = FALSE)
user.criteria <- c(0,2,3,5,7,10)
summarised.data <- df %>%
group_by(criteria.names) %>%
summarise(class1 = sum(relevant.data[criteria.data >= 0 & criteria.data < 2]),
class2 = sum(relevant.data[criteria.data >= 2 & criteria.data < 3]),
class3 = sum(relevant.data[criteria.data >= 3 & criteria.data < 5]),
class4 = sum(relevant.data[criteria.data >= 5 & criteria.data < 7]),
class5 = sum(relevant.data[criteria.data >= 7 & criteria.data < 10]))
Here's my expected output:
summarised.data
# A tibble: 4 x 6
criteria.names class1 class2 class3 class4 class5
<chr> <dbl> <dbl> <dbl> <dbl> <dbl>
1 AA 24 1 14 6 4
2 BB 17 4 11 15 4
3 CC 40 11 12 0 22
4 DD 4 12 4 5 43
MY PROBLEM IS: my "user.criteria" vector, whose values I use in my summarization, is gonna come via user input, so there's no guarantee that they are actually going to provide me with the 2,3,5,7,10 values (0 is always going to be there by default) I've explicitly put in my calculations. I've tried using the apply family functions (apply, sapply, lapply, mapply) and adply (plyr package) but so far I haven't been successful in tackling this problem. I'm trying to avoid using explicit loops in R, as the actual database I'm working with is quite huge.
Bellow is an example of my faulty code:
summarised.try <- 1:(length(user.criteria)-1) %>%
adply(1,function(x){
df %>%
group_by(criteria.names) %>%
summarise(class = sum(relevant.data[criteria.data >=user.criteria[x]
& criteria.data < user.criteria[x+1]]))})
What I want is to find an elegant way to get the values my user provides me and use them to automatically calculate my summarization, without needing to manually edit my code. Tks!
r loops dataframe criteria summarization
I have a vector with a bunch of criteria that I want to use to cycle through my data frame summarizing my relevant data column.
I reproduce bellow my code, using dplyr and pipe. It works perfectly, so I'll explain my struggle bellow it.
My code:
c1 <- c(0.5,0.5,0.5,1,1,1,2,2,2,2.5,2.5,2,3,3,4,4,4.4,4.5,4.5,5,5.5,6,7,7,8,8.5,9,9.5)
c2 <- c(12,10,40,4,12,7,3,2,1,4,8,10,10,7,7,4,4,4,5,5,6,15,15,25,4,4,7,18)
c3 <- rep(c("AA","BB","CC","DD"), 7)
df <- data.frame(criteria.names = c3, criteria.data = c1, relevant.data = c2,
stringsAsFactors = FALSE)
user.criteria <- c(0,2,3,5,7,10)
summarised.data <- df %>%
group_by(criteria.names) %>%
summarise(class1 = sum(relevant.data[criteria.data >= 0 & criteria.data < 2]),
class2 = sum(relevant.data[criteria.data >= 2 & criteria.data < 3]),
class3 = sum(relevant.data[criteria.data >= 3 & criteria.data < 5]),
class4 = sum(relevant.data[criteria.data >= 5 & criteria.data < 7]),
class5 = sum(relevant.data[criteria.data >= 7 & criteria.data < 10]))
Here's my expected output:
summarised.data
# A tibble: 4 x 6
criteria.names class1 class2 class3 class4 class5
<chr> <dbl> <dbl> <dbl> <dbl> <dbl>
1 AA 24 1 14 6 4
2 BB 17 4 11 15 4
3 CC 40 11 12 0 22
4 DD 4 12 4 5 43
MY PROBLEM IS: my "user.criteria" vector, whose values I use in my summarization, is gonna come via user input, so there's no guarantee that they are actually going to provide me with the 2,3,5,7,10 values (0 is always going to be there by default) I've explicitly put in my calculations. I've tried using the apply family functions (apply, sapply, lapply, mapply) and adply (plyr package) but so far I haven't been successful in tackling this problem. I'm trying to avoid using explicit loops in R, as the actual database I'm working with is quite huge.
Bellow is an example of my faulty code:
summarised.try <- 1:(length(user.criteria)-1) %>%
adply(1,function(x){
df %>%
group_by(criteria.names) %>%
summarise(class = sum(relevant.data[criteria.data >=user.criteria[x]
& criteria.data < user.criteria[x+1]]))})
What I want is to find an elegant way to get the values my user provides me and use them to automatically calculate my summarization, without needing to manually edit my code. Tks!
r loops dataframe criteria summarization
r loops dataframe criteria summarization
asked Nov 14 at 19:38
Bruno Assunção
234
234
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
This function might be the least elegant solution, however it works if we keep same df
's column names (i.e. criteria.names
, criteria.data
, relevant.data
):
library(dplyr)
classifier <- function(criteria, df){
classified_columns = list()
for(i in 1:length(criteria) ){
tmp_class = vector("numeric")
for( ii in unique(df$criteria.names) ){
tmp_df = df[df$criteria.names == ii,]
if ( i + 1 <= length(criteria) ){
tmp_df %>%
summarise(n = relevant.data[criteria.data >= criteria[i] & criteria.data < criteria[i + 1]] %>%
sum() ) %>%
.$n %>%
append(x = tmp_class, values = .) -> tmp_class
}
}
if( length(tmp_class) > 0 ){
classified_columns[[paste("class", i, sep = "")]] = tmp_class
}
}
data.frame(criteria.names = unique(df$criteria.names),
as.data.frame(classified_columns)) %>%
return(.)
}
Testing function:
classifier(criteria = user.criteria, df = df)
Output:
criteria.names class1 class2 class3 class4 class5
1 AA 24 1 14 6 4
2 BB 17 4 11 15 4
3 CC 40 11 12 0 22
4 DD 4 12 4 5 43
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53307625%2fautomatic-updating-criteria-for-summarizing-a-data-frame%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
This function might be the least elegant solution, however it works if we keep same df
's column names (i.e. criteria.names
, criteria.data
, relevant.data
):
library(dplyr)
classifier <- function(criteria, df){
classified_columns = list()
for(i in 1:length(criteria) ){
tmp_class = vector("numeric")
for( ii in unique(df$criteria.names) ){
tmp_df = df[df$criteria.names == ii,]
if ( i + 1 <= length(criteria) ){
tmp_df %>%
summarise(n = relevant.data[criteria.data >= criteria[i] & criteria.data < criteria[i + 1]] %>%
sum() ) %>%
.$n %>%
append(x = tmp_class, values = .) -> tmp_class
}
}
if( length(tmp_class) > 0 ){
classified_columns[[paste("class", i, sep = "")]] = tmp_class
}
}
data.frame(criteria.names = unique(df$criteria.names),
as.data.frame(classified_columns)) %>%
return(.)
}
Testing function:
classifier(criteria = user.criteria, df = df)
Output:
criteria.names class1 class2 class3 class4 class5
1 AA 24 1 14 6 4
2 BB 17 4 11 15 4
3 CC 40 11 12 0 22
4 DD 4 12 4 5 43
add a comment |
This function might be the least elegant solution, however it works if we keep same df
's column names (i.e. criteria.names
, criteria.data
, relevant.data
):
library(dplyr)
classifier <- function(criteria, df){
classified_columns = list()
for(i in 1:length(criteria) ){
tmp_class = vector("numeric")
for( ii in unique(df$criteria.names) ){
tmp_df = df[df$criteria.names == ii,]
if ( i + 1 <= length(criteria) ){
tmp_df %>%
summarise(n = relevant.data[criteria.data >= criteria[i] & criteria.data < criteria[i + 1]] %>%
sum() ) %>%
.$n %>%
append(x = tmp_class, values = .) -> tmp_class
}
}
if( length(tmp_class) > 0 ){
classified_columns[[paste("class", i, sep = "")]] = tmp_class
}
}
data.frame(criteria.names = unique(df$criteria.names),
as.data.frame(classified_columns)) %>%
return(.)
}
Testing function:
classifier(criteria = user.criteria, df = df)
Output:
criteria.names class1 class2 class3 class4 class5
1 AA 24 1 14 6 4
2 BB 17 4 11 15 4
3 CC 40 11 12 0 22
4 DD 4 12 4 5 43
add a comment |
This function might be the least elegant solution, however it works if we keep same df
's column names (i.e. criteria.names
, criteria.data
, relevant.data
):
library(dplyr)
classifier <- function(criteria, df){
classified_columns = list()
for(i in 1:length(criteria) ){
tmp_class = vector("numeric")
for( ii in unique(df$criteria.names) ){
tmp_df = df[df$criteria.names == ii,]
if ( i + 1 <= length(criteria) ){
tmp_df %>%
summarise(n = relevant.data[criteria.data >= criteria[i] & criteria.data < criteria[i + 1]] %>%
sum() ) %>%
.$n %>%
append(x = tmp_class, values = .) -> tmp_class
}
}
if( length(tmp_class) > 0 ){
classified_columns[[paste("class", i, sep = "")]] = tmp_class
}
}
data.frame(criteria.names = unique(df$criteria.names),
as.data.frame(classified_columns)) %>%
return(.)
}
Testing function:
classifier(criteria = user.criteria, df = df)
Output:
criteria.names class1 class2 class3 class4 class5
1 AA 24 1 14 6 4
2 BB 17 4 11 15 4
3 CC 40 11 12 0 22
4 DD 4 12 4 5 43
This function might be the least elegant solution, however it works if we keep same df
's column names (i.e. criteria.names
, criteria.data
, relevant.data
):
library(dplyr)
classifier <- function(criteria, df){
classified_columns = list()
for(i in 1:length(criteria) ){
tmp_class = vector("numeric")
for( ii in unique(df$criteria.names) ){
tmp_df = df[df$criteria.names == ii,]
if ( i + 1 <= length(criteria) ){
tmp_df %>%
summarise(n = relevant.data[criteria.data >= criteria[i] & criteria.data < criteria[i + 1]] %>%
sum() ) %>%
.$n %>%
append(x = tmp_class, values = .) -> tmp_class
}
}
if( length(tmp_class) > 0 ){
classified_columns[[paste("class", i, sep = "")]] = tmp_class
}
}
data.frame(criteria.names = unique(df$criteria.names),
as.data.frame(classified_columns)) %>%
return(.)
}
Testing function:
classifier(criteria = user.criteria, df = df)
Output:
criteria.names class1 class2 class3 class4 class5
1 AA 24 1 14 6 4
2 BB 17 4 11 15 4
3 CC 40 11 12 0 22
4 DD 4 12 4 5 43
answered Nov 23 at 4:45
Ulises Rosas-Puchuri
9915
9915
add a comment |
add a comment |
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53307625%2fautomatic-updating-criteria-for-summarizing-a-data-frame%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown