Xianxim

Multi tool use
Coordenadas: 34° N 109° E
Xianxim 陕西省 - Shǎnxī
|

|
Abreviatura
|
陕/陝 ou 秦
|
Capital
|
Xiam
|
Área
|
205 800 km²
|
População (2009)
|
37 720 000 hab.
|
Densidade
|
180 hab/km²
|
|
Províncias da China 
|
Xianxim (em chinês: 陕西; Shǎnxī em pinyin) é uma província da República Popular da China. A capital é Xiam.
Referências
Bibliografia |
Chediak, Antônio José (1999). Vocabulário onomástico da língua portuguesa. Rio de Janeiro: Academia Brasileira de Letras
Fernándes, Ivo Xavier (1941). Topónimos e gentílicos. 1. Lisboa: Editora Educação Nacional
Parreira, Manuel; Castro, José Manuel de; Pinto, J. Manuel de Castro (1985). Prontuário ortográfico moderno: de fácil consulta, atento às dificuldades e dúvidas de quem escreve. Lisboa: Edições ASA
 |
Este artigo sobre geografia da República Popular da China é um esboço. Você pode ajudar a Wikipédia expandindo-o. |
Subdivisões da China |
Províncias |
Anhui · Fujian · Gansu · Guangdong · Guizhou · Hainan · Hebei · Heilongjiang · Henan · Hubei · Hunan · Jiangsu · Jiangxi · Jilin · Liaoning · Qinghai · Xianxim · Shandong · Shanxi · Sichuan · Yunnan · Zhejiang · Taiwan¹
|
 |
Regiões autónomas |
Guangxi · Mongólia Interior · Ningxia · Tibete · Xinjiang
|
Municípios |
Chongqing · Pequim · Tianjin · Xangai
|
Regiões administrativas especiais |
Hong Kong · Macau
|
Nota: Observar o status de Taiwan (ver: estatuto de Taiwan). |
dWXPUYSElKas FldZrqADDi5CTzvf6E0Vm,7np1E
Popular posts from this blog
0
I found a lot of questions abount appendices and ToC. Many users want appendices to be grouped in an Appendix part, however some problems arise with ToC, hyperref, PDF viewer bookmarks, and so on. There are different solutions which require extra packages, command patching and other extra code, however none of them satisfies me. I almost found an easy way to accomplish a good result, where appendices are added to bookmarks in the right way and hyperref links point to the right page. However, the number of the "Appendix" part page is wrong (it's the number of appendix A). Is there any EASY way to fix that? This is a MWE: documentclass{book} usepackage[nottoc,notlot,notlof]{tocbibind} usepackage{hyperref} begin{document} frontmatter tableofcontents mainmatter part{First} chapter{...
1
In the sklearn.model_selection.cross_val_predict page it is stated: Generate cross-validated estimates for each input data point. It is not appropriate to pass these predictions into an evaluation metric. Can someone explain what does it mean? If this gives estimate of Y (y prediction) for every Y (true Y), why can't I calculate metrics such as RMSE or coefficient of determination using these results?
python scikit-learn cross-validation
share | improve this question
edited Nov 28 '18 at 17:52
desertnaut
20.3k 7 43 79
...
.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty{ height:90px;width:728px;box-sizing:border-box;
}
0
I have written a function using curl to generate the token. I check whether the token exists; if not, then I execute the function, otherwise I skip this function and proceed to next. But I am not sure that it will work if a token is expired. Is there any command to identify the expired token and generates the new one by calling this function? #!/bin/ksh export V_TOKEN="gen_token_${V_DATE}.txt" #### Calling function to generate the token function callPOST { curl -X POST -H 'Content-Type: application/x-www-form-url' -d 'grant_type=password&username=usr01&password=pwd...