São Marinho participou dos Jogos Olímpicos de Inverno da Juventude de 2012, realizados em Innsbruck, na Áustria. A delegação nacional contou com um total de um atleta, que disputou provas do esqui alpino.
Índice
1Esqui alpino
2Veja também
3Ligações externas
4Referências
Esqui alpino |
Ver artigo principal: Esqui alpino nos Jogos Olímpicos de Inverno da Juventude de 2012
Atleta
Evento
Final
Descida 1
Descida 2
Total
Pos.
Vincenzo Michelotti
Slalom masculino
48.67
Não completou
Slalom gigante masculino
1:11.34
1:01.44
2:12.78
36
Veja também |
San Marino nos Jogos Olímpicos de Verão de 2012
Ligações externas |
Atletas por país nos Jogos Olímpicos de Inverno da Juventude
Referências
↑«Innsbruck 2012 Winter Youth Olympic Games NOC Flag Bearers» (PDF) (em inglês). Innsbruck 2012. Consultado em 27 de maio de 2012
v
d
e
Países nos Jogos Olímpicos de Inverno da Juventude de 2012 em Innsbruck, Áustria
África
África do Sul •
Eritreia •
Marrocos
América
Argentina •
Brasil •
Canadá •
Chile •
Estados Unidos •
Ilhas Cayman •
México •
Peru
Ásia
Cazaquistão •
China •
Coreia do Sul •
Filipinas •
Índia •
Irã •
Japão •
Líbano •
Mongólia •
Nepal •
Quirguistão •
Taipé Chinês •
Uzbequistão
0
I found a lot of questions abount appendices and ToC. Many users want appendices to be grouped in an Appendix part, however some problems arise with ToC, hyperref, PDF viewer bookmarks, and so on. There are different solutions which require extra packages, command patching and other extra code, however none of them satisfies me. I almost found an easy way to accomplish a good result, where appendices are added to bookmarks in the right way and hyperref links point to the right page. However, the number of the "Appendix" part page is wrong (it's the number of appendix A). Is there any EASY way to fix that? This is a MWE: documentclass{book} usepackage[nottoc,notlot,notlof]{tocbibind} usepackage{hyperref} begin{document} frontmatter tableofcontents mainmatter part{First} chapter{...
1
In the sklearn.model_selection.cross_val_predict page it is stated: Generate cross-validated estimates for each input data point. It is not appropriate to pass these predictions into an evaluation metric. Can someone explain what does it mean? If this gives estimate of Y (y prediction) for every Y (true Y), why can't I calculate metrics such as RMSE or coefficient of determination using these results?
python scikit-learn cross-validation
share | improve this question
edited Nov 28 '18 at 17:52
desertnaut
20.3k 7 43 79
...
.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty{ height:90px;width:728px;box-sizing:border-box;
}
0
I have written a function using curl to generate the token. I check whether the token exists; if not, then I execute the function, otherwise I skip this function and proceed to next. But I am not sure that it will work if a token is expired. Is there any command to identify the expired token and generates the new one by calling this function? #!/bin/ksh export V_TOKEN="gen_token_${V_DATE}.txt" #### Calling function to generate the token function callPOST { curl -X POST -H 'Content-Type: application/x-www-form-url' -d 'grant_type=password&username=usr01&password=pwd...