Iwakuni

Multi tool use
 |
Iwakuni岩国市 (-shi)
|
|
|
País
|
Japão
|
Área
|
- Total
|
221 16 km²
|
População (2003)
|
- Total
|
104 647
|
• Densidade
|
473,17 hab./km²
|
Website
|
http://www.city.iwakuni.yamaguchi.jp/
|
Iwakuni (岩国市 -shi) é uma cidade japonesa localizada na província de Yamaguchi.
Em 2003, a cidade tinha uma população estimada em 104 647 habitantes e uma densidade populacional de 473,17 h/km². Tem uma área total de 221,16 km².
Recebeu o estatuto de cidade a 1 de Abril de 1940.
Cidades-irmãs |
Tottori, Japão
Everett, Estados Unidos
Jundiaí, Brasil
Taicang, China
Ligações externas |

|
Este artigo é um esboço sobre Geografia da prefeitura de Yamaguchi. Você pode ajudar a Wikipédia expandindo-o.
|
Prefeitura de Yamaguchi |
Cidades |
Hagi | Hikari | Hōfu | Iwakuni | Kudamatsu | Mine | Nagato | Sanyo-Onoda | Shimonoseki | Shunan | Ube | Yamaguchi | Yanai |
Distritos |
Abu | Kuga | Kumage | Oshima |
|
urfuJJ DHrK kQhR67jr3A0s,YpMVOVEYnVqrQKio,9 3CgVw,PvquZHn2 kMsFFKUC0y
Popular posts from this blog
0
I found a lot of questions abount appendices and ToC. Many users want appendices to be grouped in an Appendix part, however some problems arise with ToC, hyperref, PDF viewer bookmarks, and so on. There are different solutions which require extra packages, command patching and other extra code, however none of them satisfies me. I almost found an easy way to accomplish a good result, where appendices are added to bookmarks in the right way and hyperref links point to the right page. However, the number of the "Appendix" part page is wrong (it's the number of appendix A). Is there any EASY way to fix that? This is a MWE: documentclass{book} usepackage[nottoc,notlot,notlof]{tocbibind} usepackage{hyperref} begin{document} frontmatter tableofcontents mainmatter part{First} chapter{...
1
In the sklearn.model_selection.cross_val_predict page it is stated: Generate cross-validated estimates for each input data point. It is not appropriate to pass these predictions into an evaluation metric. Can someone explain what does it mean? If this gives estimate of Y (y prediction) for every Y (true Y), why can't I calculate metrics such as RMSE or coefficient of determination using these results?
python scikit-learn cross-validation
share | improve this question
edited Nov 28 '18 at 17:52
desertnaut
20.3k 7 43 79
...
.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty{ height:90px;width:728px;box-sizing:border-box;
}
0
I have written a function using curl to generate the token. I check whether the token exists; if not, then I execute the function, otherwise I skip this function and proceed to next. But I am not sure that it will work if a token is expired. Is there any command to identify the expired token and generates the new one by calling this function? #!/bin/ksh export V_TOKEN="gen_token_${V_DATE}.txt" #### Calling function to generate the token function callPOST { curl -X POST -H 'Content-Type: application/x-www-form-url' -d 'grant_type=password&username=usr01&password=pwd...