Is the next prime number always the next number divisible by the current prime number, except for any numbers...












3












$begingroup$


Is the next prime number always the next number divisible by the current prime number, except for any numbers previously divisible by primes?



E.g. take prime number $7$, squared is $49$. The next numbers not previously divisible by $2,3,5$ are $53,59,61,67,71,73,77$ -i.e. the next number divisible by $7$ is $11 times 7$ - the next prime number times the previous one.



Similarly, take $11$: squared $121$. the next numbers not divisible by $2,3,5,7$ are: $127,131,137,139,143$. i.e. $143$ is the next number divisible by $11$, which is $13 times 11$, $13$ being the next prime in the sequence.



Is this always the case? Can it be that the next prime number in sequence is not neatly divisible by the previous one or has one in between?



Appreciate this may be a silly question, i'm not a mathematician.










share|cite|improve this question









New contributor




David is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$



put on hold as unclear what you're asking by mrtaurho, Dietrich Burde, YiFan, Lee David Chung Lin, Parcly Taxel 42 mins ago


Please clarify your specific problem or add additional details to highlight exactly what you need. As it's currently written, it’s hard to tell exactly what you're asking. See the How to Ask page for help clarifying this question. If this question can be reworded to fit the rules in the help center, please edit the question.














  • 11




    $begingroup$
    Your description is confusing--for instance, if the current prime number is $7$, then "the next number divisible by the current prime number, except for any numbers divisible by primes we already have" would be $77$, which is not the next prime (the next prime is $11$).
    $endgroup$
    – Eric Wofsey
    7 hours ago






  • 1




    $begingroup$
    See Sieve of Eratosthenes en.wikipedia.org/wiki/Sieve_of_Eratosthenes
    $endgroup$
    – mfl
    7 hours ago










  • $begingroup$
    sorry, i mean that 77 is the next prime, times the previous prime. ill edit to clarify
    $endgroup$
    – David
    7 hours ago










  • $begingroup$
    Welcome to Math Stack Exchange. Are you saying that, if $p_n$ is the $n^{th}$ prime number, then the next composite number after $p_n^2$ not divisible by $p_1,p_2,...,p_{n-1}$ is $p_ntimes p_{n+1}$?
    $endgroup$
    – J. W. Tanner
    7 hours ago








  • 1




    $begingroup$
    Hi. Your title & first sentence still don't make sense, a prime isn't divisible by anything but itself & 1. What are you asking? Use enough words, phrases & sentences to say what you mean. Clarify via edits, not commments.
    $endgroup$
    – philipxy
    2 hours ago
















3












$begingroup$


Is the next prime number always the next number divisible by the current prime number, except for any numbers previously divisible by primes?



E.g. take prime number $7$, squared is $49$. The next numbers not previously divisible by $2,3,5$ are $53,59,61,67,71,73,77$ -i.e. the next number divisible by $7$ is $11 times 7$ - the next prime number times the previous one.



Similarly, take $11$: squared $121$. the next numbers not divisible by $2,3,5,7$ are: $127,131,137,139,143$. i.e. $143$ is the next number divisible by $11$, which is $13 times 11$, $13$ being the next prime in the sequence.



Is this always the case? Can it be that the next prime number in sequence is not neatly divisible by the previous one or has one in between?



Appreciate this may be a silly question, i'm not a mathematician.










share|cite|improve this question









New contributor




David is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$



put on hold as unclear what you're asking by mrtaurho, Dietrich Burde, YiFan, Lee David Chung Lin, Parcly Taxel 42 mins ago


Please clarify your specific problem or add additional details to highlight exactly what you need. As it's currently written, it’s hard to tell exactly what you're asking. See the How to Ask page for help clarifying this question. If this question can be reworded to fit the rules in the help center, please edit the question.














  • 11




    $begingroup$
    Your description is confusing--for instance, if the current prime number is $7$, then "the next number divisible by the current prime number, except for any numbers divisible by primes we already have" would be $77$, which is not the next prime (the next prime is $11$).
    $endgroup$
    – Eric Wofsey
    7 hours ago






  • 1




    $begingroup$
    See Sieve of Eratosthenes en.wikipedia.org/wiki/Sieve_of_Eratosthenes
    $endgroup$
    – mfl
    7 hours ago










  • $begingroup$
    sorry, i mean that 77 is the next prime, times the previous prime. ill edit to clarify
    $endgroup$
    – David
    7 hours ago










  • $begingroup$
    Welcome to Math Stack Exchange. Are you saying that, if $p_n$ is the $n^{th}$ prime number, then the next composite number after $p_n^2$ not divisible by $p_1,p_2,...,p_{n-1}$ is $p_ntimes p_{n+1}$?
    $endgroup$
    – J. W. Tanner
    7 hours ago








  • 1




    $begingroup$
    Hi. Your title & first sentence still don't make sense, a prime isn't divisible by anything but itself & 1. What are you asking? Use enough words, phrases & sentences to say what you mean. Clarify via edits, not commments.
    $endgroup$
    – philipxy
    2 hours ago














3












3








3


2



$begingroup$


Is the next prime number always the next number divisible by the current prime number, except for any numbers previously divisible by primes?



E.g. take prime number $7$, squared is $49$. The next numbers not previously divisible by $2,3,5$ are $53,59,61,67,71,73,77$ -i.e. the next number divisible by $7$ is $11 times 7$ - the next prime number times the previous one.



Similarly, take $11$: squared $121$. the next numbers not divisible by $2,3,5,7$ are: $127,131,137,139,143$. i.e. $143$ is the next number divisible by $11$, which is $13 times 11$, $13$ being the next prime in the sequence.



Is this always the case? Can it be that the next prime number in sequence is not neatly divisible by the previous one or has one in between?



Appreciate this may be a silly question, i'm not a mathematician.










share|cite|improve this question









New contributor




David is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$




Is the next prime number always the next number divisible by the current prime number, except for any numbers previously divisible by primes?



E.g. take prime number $7$, squared is $49$. The next numbers not previously divisible by $2,3,5$ are $53,59,61,67,71,73,77$ -i.e. the next number divisible by $7$ is $11 times 7$ - the next prime number times the previous one.



Similarly, take $11$: squared $121$. the next numbers not divisible by $2,3,5,7$ are: $127,131,137,139,143$. i.e. $143$ is the next number divisible by $11$, which is $13 times 11$, $13$ being the next prime in the sequence.



Is this always the case? Can it be that the next prime number in sequence is not neatly divisible by the previous one or has one in between?



Appreciate this may be a silly question, i'm not a mathematician.







elementary-number-theory prime-numbers






share|cite|improve this question









New contributor




David is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











share|cite|improve this question









New contributor




David is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|cite|improve this question




share|cite|improve this question








edited 6 hours ago









Mr. Brooks

43411338




43411338






New contributor




David is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









asked 7 hours ago









DavidDavid

1215




1215




New contributor




David is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





David is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






David is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.




put on hold as unclear what you're asking by mrtaurho, Dietrich Burde, YiFan, Lee David Chung Lin, Parcly Taxel 42 mins ago


Please clarify your specific problem or add additional details to highlight exactly what you need. As it's currently written, it’s hard to tell exactly what you're asking. See the How to Ask page for help clarifying this question. If this question can be reworded to fit the rules in the help center, please edit the question.









put on hold as unclear what you're asking by mrtaurho, Dietrich Burde, YiFan, Lee David Chung Lin, Parcly Taxel 42 mins ago


Please clarify your specific problem or add additional details to highlight exactly what you need. As it's currently written, it’s hard to tell exactly what you're asking. See the How to Ask page for help clarifying this question. If this question can be reworded to fit the rules in the help center, please edit the question.










  • 11




    $begingroup$
    Your description is confusing--for instance, if the current prime number is $7$, then "the next number divisible by the current prime number, except for any numbers divisible by primes we already have" would be $77$, which is not the next prime (the next prime is $11$).
    $endgroup$
    – Eric Wofsey
    7 hours ago






  • 1




    $begingroup$
    See Sieve of Eratosthenes en.wikipedia.org/wiki/Sieve_of_Eratosthenes
    $endgroup$
    – mfl
    7 hours ago










  • $begingroup$
    sorry, i mean that 77 is the next prime, times the previous prime. ill edit to clarify
    $endgroup$
    – David
    7 hours ago










  • $begingroup$
    Welcome to Math Stack Exchange. Are you saying that, if $p_n$ is the $n^{th}$ prime number, then the next composite number after $p_n^2$ not divisible by $p_1,p_2,...,p_{n-1}$ is $p_ntimes p_{n+1}$?
    $endgroup$
    – J. W. Tanner
    7 hours ago








  • 1




    $begingroup$
    Hi. Your title & first sentence still don't make sense, a prime isn't divisible by anything but itself & 1. What are you asking? Use enough words, phrases & sentences to say what you mean. Clarify via edits, not commments.
    $endgroup$
    – philipxy
    2 hours ago














  • 11




    $begingroup$
    Your description is confusing--for instance, if the current prime number is $7$, then "the next number divisible by the current prime number, except for any numbers divisible by primes we already have" would be $77$, which is not the next prime (the next prime is $11$).
    $endgroup$
    – Eric Wofsey
    7 hours ago






  • 1




    $begingroup$
    See Sieve of Eratosthenes en.wikipedia.org/wiki/Sieve_of_Eratosthenes
    $endgroup$
    – mfl
    7 hours ago










  • $begingroup$
    sorry, i mean that 77 is the next prime, times the previous prime. ill edit to clarify
    $endgroup$
    – David
    7 hours ago










  • $begingroup$
    Welcome to Math Stack Exchange. Are you saying that, if $p_n$ is the $n^{th}$ prime number, then the next composite number after $p_n^2$ not divisible by $p_1,p_2,...,p_{n-1}$ is $p_ntimes p_{n+1}$?
    $endgroup$
    – J. W. Tanner
    7 hours ago








  • 1




    $begingroup$
    Hi. Your title & first sentence still don't make sense, a prime isn't divisible by anything but itself & 1. What are you asking? Use enough words, phrases & sentences to say what you mean. Clarify via edits, not commments.
    $endgroup$
    – philipxy
    2 hours ago








11




11




$begingroup$
Your description is confusing--for instance, if the current prime number is $7$, then "the next number divisible by the current prime number, except for any numbers divisible by primes we already have" would be $77$, which is not the next prime (the next prime is $11$).
$endgroup$
– Eric Wofsey
7 hours ago




$begingroup$
Your description is confusing--for instance, if the current prime number is $7$, then "the next number divisible by the current prime number, except for any numbers divisible by primes we already have" would be $77$, which is not the next prime (the next prime is $11$).
$endgroup$
– Eric Wofsey
7 hours ago




1




1




$begingroup$
See Sieve of Eratosthenes en.wikipedia.org/wiki/Sieve_of_Eratosthenes
$endgroup$
– mfl
7 hours ago




$begingroup$
See Sieve of Eratosthenes en.wikipedia.org/wiki/Sieve_of_Eratosthenes
$endgroup$
– mfl
7 hours ago












$begingroup$
sorry, i mean that 77 is the next prime, times the previous prime. ill edit to clarify
$endgroup$
– David
7 hours ago




$begingroup$
sorry, i mean that 77 is the next prime, times the previous prime. ill edit to clarify
$endgroup$
– David
7 hours ago












$begingroup$
Welcome to Math Stack Exchange. Are you saying that, if $p_n$ is the $n^{th}$ prime number, then the next composite number after $p_n^2$ not divisible by $p_1,p_2,...,p_{n-1}$ is $p_ntimes p_{n+1}$?
$endgroup$
– J. W. Tanner
7 hours ago






$begingroup$
Welcome to Math Stack Exchange. Are you saying that, if $p_n$ is the $n^{th}$ prime number, then the next composite number after $p_n^2$ not divisible by $p_1,p_2,...,p_{n-1}$ is $p_ntimes p_{n+1}$?
$endgroup$
– J. W. Tanner
7 hours ago






1




1




$begingroup$
Hi. Your title & first sentence still don't make sense, a prime isn't divisible by anything but itself & 1. What are you asking? Use enough words, phrases & sentences to say what you mean. Clarify via edits, not commments.
$endgroup$
– philipxy
2 hours ago




$begingroup$
Hi. Your title & first sentence still don't make sense, a prime isn't divisible by anything but itself & 1. What are you asking? Use enough words, phrases & sentences to say what you mean. Clarify via edits, not commments.
$endgroup$
– philipxy
2 hours ago










3 Answers
3






active

oldest

votes


















3












$begingroup$

Think of it this way. Let $p_k$ be the $k$ prime. Let $n$ be the first composite number greater than $p_k$ so that $n$ is not divisible by $p_1,..., p_{k-1}$.



Claim: $n = p_kcdot p_{k+1}$.



Pf:



What else could it be? $n$ must have a prime factors. And those prime factor must be greater the $p_{k+1}$. The smallest number with at least two prime factors all bigger than $p_{k-1}$ must be $p_{k}cdot p_{k+1}$ because $p_k, p_{k+1}$ are the smallest choices for prime factors and the fewer prime factors the smaller the number will be.



so $n= p_kp_{k+1}$ IF $n$ has at least two prime factors.



So if $nne p_kp_{k+1}$ then 1) $n le p_kp_{k+1}$ and 2) $n$ has only one prime factor so $n=q^m$ for some prime $q$ and integer $m$.



If so, then $q ge p_{k+1}$ then $q^m ge p_{k+1}^mge p_{k+1}^2 > p_k*p_{k+1}$ which is a contradiction so $q= p_k$ and $n = p_k^m > p_k^2$. As $n$ is the smallest possible number, $n = p_k^3$ and $p_k^3 < p_k*p_{k+1}$.



That would mean $p_k^2 < p_{k+1}$.



This is impossible by Bertrands postulate.



So indeed the next composite number not divisible by $p_1,..., p_{k-1}$ larger than $p_k^2$ is $p_kp_{k+1}$.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    gotcha. its like a numerical logical tautology. wish I could mark both correct. no disrespect to eric who also had a good answer and got there first, but this one i understood a bit easier.
    $endgroup$
    – David
    6 hours ago












  • $begingroup$
    Actually on reading eric's it seems we really more or less have the same answer.
    $endgroup$
    – fleablood
    6 hours ago










  • $begingroup$
    yes, i just meant i personally found your phrasing a little easier to understand, not being a mathematician, but both are good answers
    $endgroup$
    – David
    6 hours ago



















5












$begingroup$

Yes. First let me clarify what you are trying to say. Suppose we have a prime number $p$, and consider the smallest integer $n$ greater than $p^2$ which is a multiple of $p$ but which is not divisible by any prime less than $p$. The pattern you are observing is then that $n/p$ is the smallest prime number greater than $p$.



This is indeed true in general. To prove it, note that the multiples of $p$ are just numbers of the form $ap$ where $a$ is an integer. So in finding the smallest such multiple $n$ which is not divisible by any primes less than $p$, you are just finding the smallest integer $a>p$ which is not divisible by any prime less than $p$ and setting $n=ap$. Every prime factor of this $a$ is greater than or equal to $p$. Let us first suppose that $a$ has a prime factor $q$ which is greater than $p$. Then by minimality of $a$, we must have $a=q$ (otherwise $q$ would be a smaller candidate for $a$). Moreover, by minimality $a$ must be the smallest prime greater than $p$ (any smaller such prime would be a smaller candidate for $a$). So, $a=n/p$ is indeed the smallest prime greater than $p$.



The remaining case is that $a$ has no prime factors greater than $p$, which means $p$ is its only prime factor. That is, $a$ is a power of $p$. Then $ageq p^2$ (and in fact $a=p^2$ by minimality). As before, $a$ must be less than any prime greater than $p$ by minimality. This means there are no prime numbers $q$ such that $p<q<p^2$. However, this is impossible, for instance by Bertrand's postulate (or see There is a prime between $n$ and $n^2$, without Bertrand for a simpler direct proof).






share|cite|improve this answer











$endgroup$













  • $begingroup$
    Does your solution mean that we can predict the next prime $p_{k+1}$ if we know the prime $p_k$ and apply the op method?
    $endgroup$
    – user25406
    4 hours ago










  • $begingroup$
    Well, you can find the next prime by the OP's method. I'm not sure how this is a "prediction", though.
    $endgroup$
    – Eric Wofsey
    2 hours ago



















0












$begingroup$

Yes. It follows from each composite, needing a least prime factor. Since you've eliminated possibilities up to $p_{k}$, the least prime factor of $frac{N}{p_k}$ for N greater than the square, needs fall to the next non eliminated number (the next prime in this case). This can be generalized to arithmetic progressions in general that is closed under multiplication (aka form a magma along with multiication), the next one not eliminated by previous members as a least in progression factor, is the product of the next two not used up.






share|cite|improve this answer









$endgroup$




















    3 Answers
    3






    active

    oldest

    votes








    3 Answers
    3






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    3












    $begingroup$

    Think of it this way. Let $p_k$ be the $k$ prime. Let $n$ be the first composite number greater than $p_k$ so that $n$ is not divisible by $p_1,..., p_{k-1}$.



    Claim: $n = p_kcdot p_{k+1}$.



    Pf:



    What else could it be? $n$ must have a prime factors. And those prime factor must be greater the $p_{k+1}$. The smallest number with at least two prime factors all bigger than $p_{k-1}$ must be $p_{k}cdot p_{k+1}$ because $p_k, p_{k+1}$ are the smallest choices for prime factors and the fewer prime factors the smaller the number will be.



    so $n= p_kp_{k+1}$ IF $n$ has at least two prime factors.



    So if $nne p_kp_{k+1}$ then 1) $n le p_kp_{k+1}$ and 2) $n$ has only one prime factor so $n=q^m$ for some prime $q$ and integer $m$.



    If so, then $q ge p_{k+1}$ then $q^m ge p_{k+1}^mge p_{k+1}^2 > p_k*p_{k+1}$ which is a contradiction so $q= p_k$ and $n = p_k^m > p_k^2$. As $n$ is the smallest possible number, $n = p_k^3$ and $p_k^3 < p_k*p_{k+1}$.



    That would mean $p_k^2 < p_{k+1}$.



    This is impossible by Bertrands postulate.



    So indeed the next composite number not divisible by $p_1,..., p_{k-1}$ larger than $p_k^2$ is $p_kp_{k+1}$.






    share|cite|improve this answer









    $endgroup$













    • $begingroup$
      gotcha. its like a numerical logical tautology. wish I could mark both correct. no disrespect to eric who also had a good answer and got there first, but this one i understood a bit easier.
      $endgroup$
      – David
      6 hours ago












    • $begingroup$
      Actually on reading eric's it seems we really more or less have the same answer.
      $endgroup$
      – fleablood
      6 hours ago










    • $begingroup$
      yes, i just meant i personally found your phrasing a little easier to understand, not being a mathematician, but both are good answers
      $endgroup$
      – David
      6 hours ago
















    3












    $begingroup$

    Think of it this way. Let $p_k$ be the $k$ prime. Let $n$ be the first composite number greater than $p_k$ so that $n$ is not divisible by $p_1,..., p_{k-1}$.



    Claim: $n = p_kcdot p_{k+1}$.



    Pf:



    What else could it be? $n$ must have a prime factors. And those prime factor must be greater the $p_{k+1}$. The smallest number with at least two prime factors all bigger than $p_{k-1}$ must be $p_{k}cdot p_{k+1}$ because $p_k, p_{k+1}$ are the smallest choices for prime factors and the fewer prime factors the smaller the number will be.



    so $n= p_kp_{k+1}$ IF $n$ has at least two prime factors.



    So if $nne p_kp_{k+1}$ then 1) $n le p_kp_{k+1}$ and 2) $n$ has only one prime factor so $n=q^m$ for some prime $q$ and integer $m$.



    If so, then $q ge p_{k+1}$ then $q^m ge p_{k+1}^mge p_{k+1}^2 > p_k*p_{k+1}$ which is a contradiction so $q= p_k$ and $n = p_k^m > p_k^2$. As $n$ is the smallest possible number, $n = p_k^3$ and $p_k^3 < p_k*p_{k+1}$.



    That would mean $p_k^2 < p_{k+1}$.



    This is impossible by Bertrands postulate.



    So indeed the next composite number not divisible by $p_1,..., p_{k-1}$ larger than $p_k^2$ is $p_kp_{k+1}$.






    share|cite|improve this answer









    $endgroup$













    • $begingroup$
      gotcha. its like a numerical logical tautology. wish I could mark both correct. no disrespect to eric who also had a good answer and got there first, but this one i understood a bit easier.
      $endgroup$
      – David
      6 hours ago












    • $begingroup$
      Actually on reading eric's it seems we really more or less have the same answer.
      $endgroup$
      – fleablood
      6 hours ago










    • $begingroup$
      yes, i just meant i personally found your phrasing a little easier to understand, not being a mathematician, but both are good answers
      $endgroup$
      – David
      6 hours ago














    3












    3








    3





    $begingroup$

    Think of it this way. Let $p_k$ be the $k$ prime. Let $n$ be the first composite number greater than $p_k$ so that $n$ is not divisible by $p_1,..., p_{k-1}$.



    Claim: $n = p_kcdot p_{k+1}$.



    Pf:



    What else could it be? $n$ must have a prime factors. And those prime factor must be greater the $p_{k+1}$. The smallest number with at least two prime factors all bigger than $p_{k-1}$ must be $p_{k}cdot p_{k+1}$ because $p_k, p_{k+1}$ are the smallest choices for prime factors and the fewer prime factors the smaller the number will be.



    so $n= p_kp_{k+1}$ IF $n$ has at least two prime factors.



    So if $nne p_kp_{k+1}$ then 1) $n le p_kp_{k+1}$ and 2) $n$ has only one prime factor so $n=q^m$ for some prime $q$ and integer $m$.



    If so, then $q ge p_{k+1}$ then $q^m ge p_{k+1}^mge p_{k+1}^2 > p_k*p_{k+1}$ which is a contradiction so $q= p_k$ and $n = p_k^m > p_k^2$. As $n$ is the smallest possible number, $n = p_k^3$ and $p_k^3 < p_k*p_{k+1}$.



    That would mean $p_k^2 < p_{k+1}$.



    This is impossible by Bertrands postulate.



    So indeed the next composite number not divisible by $p_1,..., p_{k-1}$ larger than $p_k^2$ is $p_kp_{k+1}$.






    share|cite|improve this answer









    $endgroup$



    Think of it this way. Let $p_k$ be the $k$ prime. Let $n$ be the first composite number greater than $p_k$ so that $n$ is not divisible by $p_1,..., p_{k-1}$.



    Claim: $n = p_kcdot p_{k+1}$.



    Pf:



    What else could it be? $n$ must have a prime factors. And those prime factor must be greater the $p_{k+1}$. The smallest number with at least two prime factors all bigger than $p_{k-1}$ must be $p_{k}cdot p_{k+1}$ because $p_k, p_{k+1}$ are the smallest choices for prime factors and the fewer prime factors the smaller the number will be.



    so $n= p_kp_{k+1}$ IF $n$ has at least two prime factors.



    So if $nne p_kp_{k+1}$ then 1) $n le p_kp_{k+1}$ and 2) $n$ has only one prime factor so $n=q^m$ for some prime $q$ and integer $m$.



    If so, then $q ge p_{k+1}$ then $q^m ge p_{k+1}^mge p_{k+1}^2 > p_k*p_{k+1}$ which is a contradiction so $q= p_k$ and $n = p_k^m > p_k^2$. As $n$ is the smallest possible number, $n = p_k^3$ and $p_k^3 < p_k*p_{k+1}$.



    That would mean $p_k^2 < p_{k+1}$.



    This is impossible by Bertrands postulate.



    So indeed the next composite number not divisible by $p_1,..., p_{k-1}$ larger than $p_k^2$ is $p_kp_{k+1}$.







    share|cite|improve this answer












    share|cite|improve this answer



    share|cite|improve this answer










    answered 6 hours ago









    fleabloodfleablood

    73.4k22791




    73.4k22791












    • $begingroup$
      gotcha. its like a numerical logical tautology. wish I could mark both correct. no disrespect to eric who also had a good answer and got there first, but this one i understood a bit easier.
      $endgroup$
      – David
      6 hours ago












    • $begingroup$
      Actually on reading eric's it seems we really more or less have the same answer.
      $endgroup$
      – fleablood
      6 hours ago










    • $begingroup$
      yes, i just meant i personally found your phrasing a little easier to understand, not being a mathematician, but both are good answers
      $endgroup$
      – David
      6 hours ago


















    • $begingroup$
      gotcha. its like a numerical logical tautology. wish I could mark both correct. no disrespect to eric who also had a good answer and got there first, but this one i understood a bit easier.
      $endgroup$
      – David
      6 hours ago












    • $begingroup$
      Actually on reading eric's it seems we really more or less have the same answer.
      $endgroup$
      – fleablood
      6 hours ago










    • $begingroup$
      yes, i just meant i personally found your phrasing a little easier to understand, not being a mathematician, but both are good answers
      $endgroup$
      – David
      6 hours ago
















    $begingroup$
    gotcha. its like a numerical logical tautology. wish I could mark both correct. no disrespect to eric who also had a good answer and got there first, but this one i understood a bit easier.
    $endgroup$
    – David
    6 hours ago






    $begingroup$
    gotcha. its like a numerical logical tautology. wish I could mark both correct. no disrespect to eric who also had a good answer and got there first, but this one i understood a bit easier.
    $endgroup$
    – David
    6 hours ago














    $begingroup$
    Actually on reading eric's it seems we really more or less have the same answer.
    $endgroup$
    – fleablood
    6 hours ago




    $begingroup$
    Actually on reading eric's it seems we really more or less have the same answer.
    $endgroup$
    – fleablood
    6 hours ago












    $begingroup$
    yes, i just meant i personally found your phrasing a little easier to understand, not being a mathematician, but both are good answers
    $endgroup$
    – David
    6 hours ago




    $begingroup$
    yes, i just meant i personally found your phrasing a little easier to understand, not being a mathematician, but both are good answers
    $endgroup$
    – David
    6 hours ago











    5












    $begingroup$

    Yes. First let me clarify what you are trying to say. Suppose we have a prime number $p$, and consider the smallest integer $n$ greater than $p^2$ which is a multiple of $p$ but which is not divisible by any prime less than $p$. The pattern you are observing is then that $n/p$ is the smallest prime number greater than $p$.



    This is indeed true in general. To prove it, note that the multiples of $p$ are just numbers of the form $ap$ where $a$ is an integer. So in finding the smallest such multiple $n$ which is not divisible by any primes less than $p$, you are just finding the smallest integer $a>p$ which is not divisible by any prime less than $p$ and setting $n=ap$. Every prime factor of this $a$ is greater than or equal to $p$. Let us first suppose that $a$ has a prime factor $q$ which is greater than $p$. Then by minimality of $a$, we must have $a=q$ (otherwise $q$ would be a smaller candidate for $a$). Moreover, by minimality $a$ must be the smallest prime greater than $p$ (any smaller such prime would be a smaller candidate for $a$). So, $a=n/p$ is indeed the smallest prime greater than $p$.



    The remaining case is that $a$ has no prime factors greater than $p$, which means $p$ is its only prime factor. That is, $a$ is a power of $p$. Then $ageq p^2$ (and in fact $a=p^2$ by minimality). As before, $a$ must be less than any prime greater than $p$ by minimality. This means there are no prime numbers $q$ such that $p<q<p^2$. However, this is impossible, for instance by Bertrand's postulate (or see There is a prime between $n$ and $n^2$, without Bertrand for a simpler direct proof).






    share|cite|improve this answer











    $endgroup$













    • $begingroup$
      Does your solution mean that we can predict the next prime $p_{k+1}$ if we know the prime $p_k$ and apply the op method?
      $endgroup$
      – user25406
      4 hours ago










    • $begingroup$
      Well, you can find the next prime by the OP's method. I'm not sure how this is a "prediction", though.
      $endgroup$
      – Eric Wofsey
      2 hours ago
















    5












    $begingroup$

    Yes. First let me clarify what you are trying to say. Suppose we have a prime number $p$, and consider the smallest integer $n$ greater than $p^2$ which is a multiple of $p$ but which is not divisible by any prime less than $p$. The pattern you are observing is then that $n/p$ is the smallest prime number greater than $p$.



    This is indeed true in general. To prove it, note that the multiples of $p$ are just numbers of the form $ap$ where $a$ is an integer. So in finding the smallest such multiple $n$ which is not divisible by any primes less than $p$, you are just finding the smallest integer $a>p$ which is not divisible by any prime less than $p$ and setting $n=ap$. Every prime factor of this $a$ is greater than or equal to $p$. Let us first suppose that $a$ has a prime factor $q$ which is greater than $p$. Then by minimality of $a$, we must have $a=q$ (otherwise $q$ would be a smaller candidate for $a$). Moreover, by minimality $a$ must be the smallest prime greater than $p$ (any smaller such prime would be a smaller candidate for $a$). So, $a=n/p$ is indeed the smallest prime greater than $p$.



    The remaining case is that $a$ has no prime factors greater than $p$, which means $p$ is its only prime factor. That is, $a$ is a power of $p$. Then $ageq p^2$ (and in fact $a=p^2$ by minimality). As before, $a$ must be less than any prime greater than $p$ by minimality. This means there are no prime numbers $q$ such that $p<q<p^2$. However, this is impossible, for instance by Bertrand's postulate (or see There is a prime between $n$ and $n^2$, without Bertrand for a simpler direct proof).






    share|cite|improve this answer











    $endgroup$













    • $begingroup$
      Does your solution mean that we can predict the next prime $p_{k+1}$ if we know the prime $p_k$ and apply the op method?
      $endgroup$
      – user25406
      4 hours ago










    • $begingroup$
      Well, you can find the next prime by the OP's method. I'm not sure how this is a "prediction", though.
      $endgroup$
      – Eric Wofsey
      2 hours ago














    5












    5








    5





    $begingroup$

    Yes. First let me clarify what you are trying to say. Suppose we have a prime number $p$, and consider the smallest integer $n$ greater than $p^2$ which is a multiple of $p$ but which is not divisible by any prime less than $p$. The pattern you are observing is then that $n/p$ is the smallest prime number greater than $p$.



    This is indeed true in general. To prove it, note that the multiples of $p$ are just numbers of the form $ap$ where $a$ is an integer. So in finding the smallest such multiple $n$ which is not divisible by any primes less than $p$, you are just finding the smallest integer $a>p$ which is not divisible by any prime less than $p$ and setting $n=ap$. Every prime factor of this $a$ is greater than or equal to $p$. Let us first suppose that $a$ has a prime factor $q$ which is greater than $p$. Then by minimality of $a$, we must have $a=q$ (otherwise $q$ would be a smaller candidate for $a$). Moreover, by minimality $a$ must be the smallest prime greater than $p$ (any smaller such prime would be a smaller candidate for $a$). So, $a=n/p$ is indeed the smallest prime greater than $p$.



    The remaining case is that $a$ has no prime factors greater than $p$, which means $p$ is its only prime factor. That is, $a$ is a power of $p$. Then $ageq p^2$ (and in fact $a=p^2$ by minimality). As before, $a$ must be less than any prime greater than $p$ by minimality. This means there are no prime numbers $q$ such that $p<q<p^2$. However, this is impossible, for instance by Bertrand's postulate (or see There is a prime between $n$ and $n^2$, without Bertrand for a simpler direct proof).






    share|cite|improve this answer











    $endgroup$



    Yes. First let me clarify what you are trying to say. Suppose we have a prime number $p$, and consider the smallest integer $n$ greater than $p^2$ which is a multiple of $p$ but which is not divisible by any prime less than $p$. The pattern you are observing is then that $n/p$ is the smallest prime number greater than $p$.



    This is indeed true in general. To prove it, note that the multiples of $p$ are just numbers of the form $ap$ where $a$ is an integer. So in finding the smallest such multiple $n$ which is not divisible by any primes less than $p$, you are just finding the smallest integer $a>p$ which is not divisible by any prime less than $p$ and setting $n=ap$. Every prime factor of this $a$ is greater than or equal to $p$. Let us first suppose that $a$ has a prime factor $q$ which is greater than $p$. Then by minimality of $a$, we must have $a=q$ (otherwise $q$ would be a smaller candidate for $a$). Moreover, by minimality $a$ must be the smallest prime greater than $p$ (any smaller such prime would be a smaller candidate for $a$). So, $a=n/p$ is indeed the smallest prime greater than $p$.



    The remaining case is that $a$ has no prime factors greater than $p$, which means $p$ is its only prime factor. That is, $a$ is a power of $p$. Then $ageq p^2$ (and in fact $a=p^2$ by minimality). As before, $a$ must be less than any prime greater than $p$ by minimality. This means there are no prime numbers $q$ such that $p<q<p^2$. However, this is impossible, for instance by Bertrand's postulate (or see There is a prime between $n$ and $n^2$, without Bertrand for a simpler direct proof).







    share|cite|improve this answer














    share|cite|improve this answer



    share|cite|improve this answer








    edited 7 hours ago

























    answered 7 hours ago









    Eric WofseyEric Wofsey

    190k14216348




    190k14216348












    • $begingroup$
      Does your solution mean that we can predict the next prime $p_{k+1}$ if we know the prime $p_k$ and apply the op method?
      $endgroup$
      – user25406
      4 hours ago










    • $begingroup$
      Well, you can find the next prime by the OP's method. I'm not sure how this is a "prediction", though.
      $endgroup$
      – Eric Wofsey
      2 hours ago


















    • $begingroup$
      Does your solution mean that we can predict the next prime $p_{k+1}$ if we know the prime $p_k$ and apply the op method?
      $endgroup$
      – user25406
      4 hours ago










    • $begingroup$
      Well, you can find the next prime by the OP's method. I'm not sure how this is a "prediction", though.
      $endgroup$
      – Eric Wofsey
      2 hours ago
















    $begingroup$
    Does your solution mean that we can predict the next prime $p_{k+1}$ if we know the prime $p_k$ and apply the op method?
    $endgroup$
    – user25406
    4 hours ago




    $begingroup$
    Does your solution mean that we can predict the next prime $p_{k+1}$ if we know the prime $p_k$ and apply the op method?
    $endgroup$
    – user25406
    4 hours ago












    $begingroup$
    Well, you can find the next prime by the OP's method. I'm not sure how this is a "prediction", though.
    $endgroup$
    – Eric Wofsey
    2 hours ago




    $begingroup$
    Well, you can find the next prime by the OP's method. I'm not sure how this is a "prediction", though.
    $endgroup$
    – Eric Wofsey
    2 hours ago











    0












    $begingroup$

    Yes. It follows from each composite, needing a least prime factor. Since you've eliminated possibilities up to $p_{k}$, the least prime factor of $frac{N}{p_k}$ for N greater than the square, needs fall to the next non eliminated number (the next prime in this case). This can be generalized to arithmetic progressions in general that is closed under multiplication (aka form a magma along with multiication), the next one not eliminated by previous members as a least in progression factor, is the product of the next two not used up.






    share|cite|improve this answer









    $endgroup$


















      0












      $begingroup$

      Yes. It follows from each composite, needing a least prime factor. Since you've eliminated possibilities up to $p_{k}$, the least prime factor of $frac{N}{p_k}$ for N greater than the square, needs fall to the next non eliminated number (the next prime in this case). This can be generalized to arithmetic progressions in general that is closed under multiplication (aka form a magma along with multiication), the next one not eliminated by previous members as a least in progression factor, is the product of the next two not used up.






      share|cite|improve this answer









      $endgroup$
















        0












        0








        0





        $begingroup$

        Yes. It follows from each composite, needing a least prime factor. Since you've eliminated possibilities up to $p_{k}$, the least prime factor of $frac{N}{p_k}$ for N greater than the square, needs fall to the next non eliminated number (the next prime in this case). This can be generalized to arithmetic progressions in general that is closed under multiplication (aka form a magma along with multiication), the next one not eliminated by previous members as a least in progression factor, is the product of the next two not used up.






        share|cite|improve this answer









        $endgroup$



        Yes. It follows from each composite, needing a least prime factor. Since you've eliminated possibilities up to $p_{k}$, the least prime factor of $frac{N}{p_k}$ for N greater than the square, needs fall to the next non eliminated number (the next prime in this case). This can be generalized to arithmetic progressions in general that is closed under multiplication (aka form a magma along with multiication), the next one not eliminated by previous members as a least in progression factor, is the product of the next two not used up.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered 2 hours ago









        Roddy MacPheeRoddy MacPhee

        573118




        573118















            Popular posts from this blog

            A CLEAN and SIMPLE way to add appendices to Table of Contents and bookmarks

            Calculate evaluation metrics using cross_val_predict sklearn

            Insert data from modal to MySQL (multiple modal on website)