Palpimanoidea

Multi tool use
Palpimanoidea
|
|
Classificação científica
|
Reino:
|
Animalia
|
Filo:
|
Arthropoda
|
Classe:
|
Arachnida
|
Ordem:
|
Araneae
|
Subordem:
|
Araneomorphae
|
Divisão:
|
Entelegynae
|
Superfamília:
|
Palpimanoidea
|
|
Diversidade
|
Ver texto.
|
Distribuição geográfica
|

|
Palpimanoidea é uma superfamília de aranhas de 8 olhos que agrupa três famílias. Esta superfamília, em conjunto com as sete famílias do clado Dionycha, são o único grupor de aranhas sem membros com cribelo. Análises moleculares recentes indicam que os Palpimanoidea provavelmente não são monofiléticos.[1]
Taxonomia |
A superfamília Palpimanoidea contém as seguintes famílias:
- Huttoniidae
- Palpimanidae
- Stenochilidae
Notas
Referências |
- Griswold, C.E., Coddington, J.A., Platnick, N.I. and Forster, R.R. (1999). Towards a Phylogeny of Entelegyne Spiders (Araneae, Araneomorphae, Entelegynae). Journal of Arachnology 27:53-63. PDF
- Rix, Michael; Harvey, Mark; Roberts, J. Dale (2008). "Molecular phylogenetics of the spider family Micropholcommatidae (Arachnida: Araneae) using nuclear rRNA genes (18S and 28S)". Molecular Phylogenetics and Evolution 46: 1031–1048.
Identificadores taxonómicos |
- EOL: 3020346
- Fossilworks: 190413
- GBIF: 9568
- iNaturalist: 367189
- NCBI: 336668
|
2tMKycuJII66ThX0u4YT eBef1ZrnxIpOXl,Y93V WI,1rL9SmF aJoNGQ7j0Ij,uq9
Popular posts from this blog
0
I found a lot of questions abount appendices and ToC. Many users want appendices to be grouped in an Appendix part, however some problems arise with ToC, hyperref, PDF viewer bookmarks, and so on. There are different solutions which require extra packages, command patching and other extra code, however none of them satisfies me. I almost found an easy way to accomplish a good result, where appendices are added to bookmarks in the right way and hyperref links point to the right page. However, the number of the "Appendix" part page is wrong (it's the number of appendix A). Is there any EASY way to fix that? This is a MWE: documentclass{book} usepackage[nottoc,notlot,notlof]{tocbibind} usepackage{hyperref} begin{document} frontmatter tableofcontents mainmatter part{First} chapter{...
1
In the sklearn.model_selection.cross_val_predict page it is stated: Generate cross-validated estimates for each input data point. It is not appropriate to pass these predictions into an evaluation metric. Can someone explain what does it mean? If this gives estimate of Y (y prediction) for every Y (true Y), why can't I calculate metrics such as RMSE or coefficient of determination using these results?
python scikit-learn cross-validation
share | improve this question
edited Nov 28 '18 at 17:52
desertnaut
20.3k 7 43 79
...
0
I have problem with inserting data to MySQL from modal. My modal: <a href="#" class="badge badge-pill badge-success">6 komentarzy</a> <a href="#" class="badge badge-pill badge-danger">brak komentarzy</a> <a data-toggle="modal" href="#add_desk_comm_{$desk_['desk_id']}" data-target="#add_desk_comm_{$desk_['desk_id']}" class="ediiit">(dodaj)</a> <div class="modal fade" id="add_desk_comm_{$desk_['desk_id']}" tabindex="-1" role="dialog" aria-labelledby="edit_printer" aria-hidden="true"> <div class="modal-dialog" role="document"> ...