Alta Birmânia

Multi tool use

Geografia política da Birmânia do ponto de vista britânico em 1885. A Alta Birmânia está em cor-de-laranja e a Baixa Birmânia ou Birmânia Britânica e outras possessões em cor-de-rosa
A expressão Alta Birmânia designa as partes centrais e setentrionais da Birmânia, hoje Mianmar. Em 1852, depois da Segunda Guerra Anglo-Birmanesa, a Baixa Birmânia foi anexada pelos ingleses. A Alta Birmânia foi independente até ao fim da Terceira Guerra Anglo-Birmanesa em 1885.[1]
Também se chama a Alta Birmânia de Birmânia propriamente dita ou Reino de Ava. A sua população é principalmente birmanesa ou "Bramá".[2]
A Alta Birmânia é cortada pelo curso rio Irrawaddy em seu caminho na direção sul.[1]
Referências
↑ ab www.britannica.com
↑ www.archive.org/Gazetteer of Upper Burma and the Shan states by Scott J. George (1901)
Portal de Myanmar
19A,OSTlZka,MLVpCcvjgozmzVs KEv97N8KeR1fRAvSD4,IXPfOeTBGFT1DIpQDdH6R
Popular posts from this blog
0
I found a lot of questions abount appendices and ToC. Many users want appendices to be grouped in an Appendix part, however some problems arise with ToC, hyperref, PDF viewer bookmarks, and so on. There are different solutions which require extra packages, command patching and other extra code, however none of them satisfies me. I almost found an easy way to accomplish a good result, where appendices are added to bookmarks in the right way and hyperref links point to the right page. However, the number of the "Appendix" part page is wrong (it's the number of appendix A). Is there any EASY way to fix that? This is a MWE: documentclass{book} usepackage[nottoc,notlot,notlof]{tocbibind} usepackage{hyperref} begin{document} frontmatter tableofcontents mainmatter part{First} chapter{...
1
In the sklearn.model_selection.cross_val_predict page it is stated: Generate cross-validated estimates for each input data point. It is not appropriate to pass these predictions into an evaluation metric. Can someone explain what does it mean? If this gives estimate of Y (y prediction) for every Y (true Y), why can't I calculate metrics such as RMSE or coefficient of determination using these results?
python scikit-learn cross-validation
share | improve this question
edited Nov 28 '18 at 17:52
desertnaut
20.3k 7 43 79
...
.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty{ height:90px;width:728px;box-sizing:border-box;
}
0
I have written a function using curl to generate the token. I check whether the token exists; if not, then I execute the function, otherwise I skip this function and proceed to next. But I am not sure that it will work if a token is expired. Is there any command to identify the expired token and generates the new one by calling this function? #!/bin/ksh export V_TOKEN="gen_token_${V_DATE}.txt" #### Calling function to generate the token function callPOST { curl -X POST -H 'Content-Type: application/x-www-form-url' -d 'grant_type=password&username=usr01&password=pwd...